1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Do Molecular Geometries Change Under Vibrational Strong Coupling?

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As pioneering experiments have shown, strong vibrational coupling between molecular vibrations and light modes in an optical cavity can significantly alter molecular properties and even affect chemical reactivity. However, the current theoretical description is limited and far from complete. To explore the origin of this exciting observation, we investigate how the molecular structure changes under strong light-matter coupling using an ab-initio method based on the cavity Born-Oppenheimer Hartree-Fock ansatz. By optimizing H2O and H2O2 resonantly coupled to cavity modes, we study the importance of reorientation and geometric relaxation. In addition, we show that the inclusion of one or two cavity modes can change the observed results. On the basis of our findings, we derive a simple concept to estimate the effect of the cavity interaction on the molecular geometry using the molecular polarizability and the dipole moments.

          Related collections

          Author and article information

          Journal
          27 May 2024
          Article
          2405.17246
          c1b82b9b-02a0-4ee4-a01b-7e967651526f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          physics.chem-ph

          Physical chemistry
          Physical chemistry

          Comments

          Comment on this article