9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Twisted light transmission over 143 km

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental two-photon, three-dimensional entanglement for quantum communication.

          Orbital angular momentum entangled photons emitted by a down-conversion source are in higher dimensional entangled states. Here we report the experimental confirmation by demonstrating a violation of a generalized Clauser-Horne-Shimony-Holt-type Bell inequality in three dimensions by more than 18 standard deviations. Higher dimensional entangled states allow the realization of new types of quantum communication protocols. They also provide a more secure quantum cryptography scheme. Therefore our experimental results are likely to have applications in future quantum communication technology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Entanglement of High Angular Momenta

            Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM) and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrary high difference in the quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement up to 600 quanta difference in the orbital angular momentum. The only restrictive factors towards higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of the angular resolution in remote sensing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Experimental high-dimensional two-photon entanglement and violations of generalised Bell inequalities

              , , (2011)
              Quantum entanglement plays a vital role in many quantum information and communication tasks. Entangled states of higher dimensional systems are of great interest due to the extended possibilities they provide. For example, they allow the realisation of new types of quantum information schemes that can offer higher information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems. Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher dimensional entangled systems are used. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalised to d-dimensional systems with up to d = 12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum (OAM), generated through spontaneous parametric down-conversion (SPDC), and manipulated using computer controlled holograms.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 29 2016
                November 29 2016
                : 113
                : 48
                : 13648-13653
                Article
                10.1073/pnas.1612023113
                5137742
                27856744
                c18e6448-9bfd-4009-8065-faef8619e7ea
                © 2016
                History

                Comments

                Comment on this article