11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.

      Phytochemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucosinolates (beta-thioglucoside-N-hydroxysulfates), the precursors of isothiocyanates, are present in sixteen families of dicotyledonous angiosperms including a large number of edible species. At least 120 different glucosinolates have been identified in these plants, although closely related taxonomic groups typically contain only a small number of such compounds. Glucosinolates and/or their breakdown products have long been known for their fungicidal, bacteriocidal, nematocidal and allelopathic properties and have recently attracted intense research interest because of their cancer chemoprotective attributes. Numerous reviews have addressed the occurrence of glucosinolates in vegetables, primarily the family Brassicaceae (syn. Cruciferae; including Brassica spp and Raphanus spp). The major focus of much previous research has been on the negative aspects of these compounds because of the prevalence of certain "antinutritional" or goitrogenic glucosinolates in the protein-rich defatted meal from widely grown oilseed crops and in some domesticated vegetable crops. There is, however, an opposite and positive side of this picture represented by the therapeutic and prophylactic properties of other "nutritional" or "functional" glucosinolates. This review addresses the complex array of these biologically active and chemically diverse compounds many of which have been identified during the past three decades in other families. In addition to the Brassica vegetables, these glucosinolates have been found in hundreds of species, many of which are edible or could provide substantial quantities of glucosinolates for isolation, for biological evaluation, and potential application as chemoprotective or other dietary or pharmacological agents.

          Related collections

          Author and article information

          Journal
          11198818
          10.1016/s0031-9422(00)00316-2

          Comments

          Comment on this article

          scite_