27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation and characterization of microparticles of piroxicam by spray drying and spray chilling methods

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Piroxicam, an anti-inflammatory drug, exhibits poor water solubility and flow properties, poor dissolution and poor wetting. Consequently, the aim of this study was to improve the dissolution of piroxicam. Microparticles containing piroxicam were produced by spray drying, using isopropyl alcohol and water in the ratio of 40:60 v/v as solvent system, and spray chilling technology by melting the drug and chilling it with a pneumatic nozzle to enhance dissolution rate. The prepared formulations were evaluated for in vitro dissolution and solubility. The prepared drug particles were characterized by scanning electron microscopy (SEM), differential scanning calorimeter, X-ray diffraction and Fourier transform infrared spectroscopy. Dissolution profile of the spray dried microparticles was compared with spray-chilled microparticles, pure and recrystallized samples. Spray dried microparticles and spray chilled microparticles exhibited decreased crystallinity and improved micromeritic properties. The dissolution of the spray dried microparticle and spray chilled particles were improved compared with recrystallized and pure sample of piroxicam. Consequently, it was believed that spray drying of piroxicam is a useful tool to improve dissolution but not in case of spray chilling. This may be due to the degradation of drug or variations in the resonance structure or could be due to minor distortion of bond angles. Hence, this spray drying technique can be used for formulation of tablets of piroxicam by direct compression with directly compressible tablet excipients.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Encapsulation in the food industry: a review.

          Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs.

            Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of poorly water-soluble drugs, their commercial use has been very limited, primarily because of manufacturing difficulties and stability problems. Solid dispersions of drugs were generally produced by melt or solvent evaporation methods. The materials, which were usually semisolid and waxy in nature, were hardened by cooling to very low temperatures. They were then pulverized, sieved, mixed with relatively large amounts of excipients, and encapsulated into hard gelatin capsules or compressed into tablets. These operations were difficult to scale up for the manufacture of dosage forms. The situation has, however, been changing in recent years because of the availability of surface-active and self-emulsifying carriers and the development of technologies to encapsulate solid dispersions directly into hard gelatin capsules as melts. Solid plugs are formed inside the capsules when the melts are cooled to room temperature. Because of surface activity of carriers used, complete dissolution of drug from such solid dispersions can be obtained without the need for pulverization, sieving, mixing with excipients, etc. Equipment is available for large-scale manufacturing of such capsules. Some practical limitations of dosage form development might be the inadequate solubility of drugs in carriers and the instability of drugs and carriers at elevated temperatures necessary to manufacture capsules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer.

              A systematic examination is presented of the effects of process variables on the powder yield of amorphous trehalose obtained from the Buchi Model 191 laboratory-scale mini spray dryer. By using a specially made, narrow cyclone the powder yield could be greatly improved at all process temperatures examined. Calculations of the separation efficiencies of the improved cyclone and the manufacturer's standard cyclone are given, which show that the former's higher tangential particle velocity at the radius of the exit duct is responsible for the improved performance. The powder yield increases with higher process temperatures, owing to improved droplet drying and reduced droplet/particle deposition on the walls of the drying chamber. A maximum in the powder yield is reached, however, after which it decreases sharply. This is caused by heating of the cyclone wall to >10 degrees C above the so-called 'sticky point' of the trehalose, causing increased particle deposits on the walls of the tower and cyclone. Increasing liquid feed flow rate or decreasing atomizing air flow rate too extensively were both detrimental to powder yield. The drying air flow rate should be as high as possible to ensure sufficient enthalpy throughput to dry the trehalose adequately to give a high powder yield. The enthalpy balance calculation for drying trehalose with the new cyclone was used successfully to interpret the results obtained. Some recommendations for optimizing powder yield of an amorphous material are given.
                Bookmark

                Author and article information

                Journal
                Res Pharm Sci
                JRPS
                Research in Pharmaceutical Sciences
                Medknow Publications (India )
                1735-5362
                1735-9414
                Jul-Dec 2010
                : 5
                : 2
                : 89-97
                Affiliations
                Department of Pharmaceutics, JSS College of Pharmacy, JSS University, S.S Nagar, Mysore-570015, India
                Author notes
                *Corresponding author: Mudit Dixit, PhD Tel. 0091 9035508450 Email: muditdixit911@ 123456yahoo.com
                Article
                JRPS-5-89
                3093626
                21589797
                c1754708-9bc3-4e97-81bb-d6e7ac4df77a
                © Journal of Research in Pharmaceutical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : June 2010
                : July 2010
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                spray drying,piroxicam,dissolution,solubility,spray chilling,crystallinity

                Comments

                Comment on this article