4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products

      review-article
      , *
      Foods
      MDPI
      grape pomace, dairy cow, milk, cheese, antioxidant, polyunsaturated fatty acid, linoleic acid, volatile compound

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grape pomace (GP) is the main solid by-product of winemaking and represents a rich source of potent bioactive compounds which could display a wide range of beneficial effects in human health for their association with reduced risk of several chronic diseases. Several studies have proposed the use of GP as a macro-ingredient to obtain economically worthwhile animal feedstuffs naturally enriched by polyphenols and dietary fibers. Moreover, the research carried out in this field in the last two decades evidences the ability of GP to induce beneficial effects in cow milk and its derived dairy products. First of all, a general increase in concentration of polyunsaturated fatty acids (PUFA) was observed, and this could be considered the reflection of the high content of these compounds in the by-product. Furthermore, an improvement in the oxidative stability of dairy products was observed, presumably as a direct consequence of the high content of bioactive compounds in GP that are credited with high and well-characterized antioxidant functions. Last but not least, particularly in ripened cheeses, volatile compounds (VOCs) were identified, arising both from lipolytic and proteolytic processes and commonly associated with pleasant aromatic notes. In conclusion, the GP introduction in the diet of lactating cows made it possible to obtain dairy products characterized by improved nutritional properties and high health functionality. Furthermore, the presumable improvement of organoleptic properties seems to be effective in contributing to an increase in the consumer acceptability of the novel products. This review aims to evaluate the effect of the dietary GP supplementation on the quality of milk and dairy products deriving from lactating dairy cows.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions.

          Increasing interest in the health benefits of tea has led to the inclusion of tea extracts in dietary supplements and functional foods. However, epidemiologic evidence regarding the effects of tea consumption on cancer and cardiovascular disease risk is conflicting. While tea contains a number of bioactive chemicals, it is particularly rich in catechins, of which epigallocatechin gallate (EGCG) is the most abundant. Catechins and their derivatives are thought to contribute to the beneficial effects ascribed to tea. Tea catechins and polyphenols are effective scavengers of reactive oxygen species in vitro and may also function indirectly as antioxidants through their effects on transcription factors and enzyme activities. The fact that catechins are rapidly and extensively metabolized emphasizes the importance of demonstrating their antioxidant activity in vivo. In humans, modest transient increases in plasma antioxidant capacity have been demonstrated following the consumption of tea and green tea catechins. The effects of tea and green tea catechins on biomarkers of oxidative stress, especially oxidative DNA damage, appear very promising in animal models, but data on biomarkers of in vivo oxidative stress in humans are limited. Larger human studies examining the effects of tea and tea catechin intake on biomarkers of oxidative damage to lipids, proteins, and DNA are needed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention.

              Free radicals have been implicated in over a hundred disease conditions in humans, including arthritis, hemorrhagic shock, atherosclerosis, advancing age, ischemia and reperfusion injury of many organs, Alzheimer and Parkinson's disease, gastrointestinal dysfunctions, tumor promotion and carcinogenesis, and AIDS. Antioxidants are potent scavengers of free radicals and serve as inhibitors of neoplastic processes. A large number of synthetic and natural antioxidants have been demonstrated to induce beneficial effects on human health and disease prevention. However, the structure-activity relationship, bioavailability and therapeutic efficacy of the antioxidants differ extensively. Oligomeric proanthocyanidins, naturally occurring antioxidants widely available in fruits, vegetables, nuts, seeds, flowers and bark, have been reported to possess a broad spectrum of biological, pharmacological and therapeutic activities against free radicals and oxidative stress. We have assessed the concentration- or dose-dependent free radical scavenging ability of a novel IH636 grape seed proanthocyanidin extract (GSPE) both in vitro and in vivo models, and compared the free radical scavenging ability of GSPE with vitamins C, E and beta-carotene. These experiments demonstrated that GSPE is highly bioavailable and provides significantly greater protection against free radicals and free radical-induced lipid peroxidation and DNA damage than vitamins C, E and beta-carotene. GSPE was also shown to demonstrate cytotoxicity towards human breast, lung and gastric adenocarcinoma cells, while enhancing the growth and viability of normal human gastric mucosal cells. The comparative protective effects of GSPE, vitamins C and E were examined on tobacco-induced oxidative stress and apoptotic cell death in human oral keratinocytes. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, while apoptotic cell death was assessed by flow cytometry. GSPE provided significantly better protection as compared to vitamins C and E, singly and in combination. GSPE also demonstrated excellent protection against acetaminophen overdose-induced liver and kidney damage by regulating bcl-X(L) gene, DNA damage and presumably by reducing oxidative stress. GSPE demonstrated excellent protection against myocardial ischemia-reperfusion injury and myocardial infarction in rats. GSPE was also shown to upregulate bcl(2) gene and downregulate the oncogene c-myc. Topical application of GSPE enhances sun protection factor in human volunteers, as well as supplementation of GSPE ameliorates chronic pancreatitis in humans. These results demonstrate that GSPE provides excellent protection against oxidative stress and free radical-mediated tissue injury.
                Bookmark

                Author and article information

                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                10 February 2020
                February 2020
                : 9
                : 2
                : 168
                Affiliations
                Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; aianni@ 123456unite.it
                Author notes
                [* ]Correspondence: gmartino@ 123456unite.it
                Author information
                https://orcid.org/0000-0003-3102-6804
                https://orcid.org/0000-0002-7878-9318
                Article
                foods-09-00168
                10.3390/foods9020168
                7073903
                32050684
                c169d97d-d247-4a4c-bb49-2aa6d053143f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 January 2020
                : 07 February 2020
                Categories
                Review

                grape pomace,dairy cow,milk,cheese,antioxidant,polyunsaturated fatty acid,linoleic acid,volatile compound

                Comments

                Comment on this article