38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward a General Model for the Evolutionary Dynamics of Gene Duplicates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene duplication is an important process in the functional divergence of genes and genomes. Several processes have been described that lead to duplicate gene retention over different timescales after both smaller-scale events and whole-genome duplication, including neofunctionalization, subfunctionalization, and dosage balance. Two common modes of duplicate gene loss include nonfunctionalization and loss due to population dynamics (failed fixation). Previous work has characterized expectations of duplicate gene retention under the neofunctionalization and subfunctionalization models. Here, that work is extended to dosage balance using simulations. A general model for duplicate gene loss/retention is then presented that is capable of fitting expectations under the different models, is defined at t = 0, and decays to an orthologous asymptotic rate rather than zero, based upon a modified Weibull hazard function. The model in a maximum likelihood framework shows the property of identifiability, recovering the evolutionary mechanism and parameters of simulation. This model is also capable of recovering the evolutionary mechanism of simulation from data generated using an unrelated network population genetic model. Lastly, the general model is applied as part of a mixture model to recent gene duplicates from the Oikopleura dioica genome, suggesting that neofunctionalization may be an important process leading to duplicate gene retention in that organism.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolution by gene duplication: an update

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition.

            Each mode of gene duplication (tandem, tetraploid, segmental, transpositional) retains genes in a biased manner. A reciprocal relationship exists between plant genes retained postpaleotetraploidy versus genes retained after an ancient tandem duplication. Among the models (C, neofunctionalization, balanced gene drive) and ideas that might explain this relationship, only balanced gene drive predicts reciprocity. The gene balance hypothesis explains that more "connected" genes--by protein-protein interactions in a heteromer, for example--are less likely to be retained as a tandem or transposed duplicate and are more likely to be retained postpaleotetraploidy; otherwise, selectively negative dosage effects are created. Biased duplicate retention is an instant and neutral by-product, a spandrel, of purifying selection. Balanced gene drive expanded plant gene families, including those encoding proteasomal proteins, protein kinases, motors, and transcription factors, with each paleotetraploidy, which could explain trends involving complexity. Balanced gene drive is a saltation mechanism in the mutationist tradition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The probability of duplicate gene preservation by subfunctionalization.

              It has often been argued that gene-duplication events are most commonly followed by a mutational event that silences one member of the pair, while on rare occasions both members of the pair are preserved as one acquires a mutation with a beneficial function and the other retains the original function. However, empirical evidence from genome duplication events suggests that gene duplicates are preserved in genomes far more commonly and for periods far in excess of the expectations under this model, and whereas some gene duplicates clearly evolve new functions, there is little evidence that this is the most common mechanism of duplicate-gene preservation. An alternative hypothesis is that gene duplicates are frequently preserved by subfunctionalization, whereby both members of a pair experience degenerative mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We consider the ways in which the probability of duplicate-gene preservation by such complementary mutations is modified by aspects of gene structure, degree of linkage, mutation rates and effects, and population size. Even if most mutations cause complete loss-of-subfunction, the probability of duplicate-gene preservation can be appreciable if the long-term effective population size is on the order of 10(5) or smaller, especially if there are more than two independently mutable subfunctions per locus. Even a moderate incidence of partial loss-of-function mutations greatly elevates the probability of preservation. The model proposed herein leads to quantitative predictions that are consistent with observations on the frequency of long-term duplicate gene preservation and with observations that indicate that a common fate of the members of duplicate-gene pairs is the partitioning of tissue-specific patterns of expression of the ancestral gene.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                2011
                12 September 2011
                2011
                12 September 2011
                : 3
                : 1197-1209
                Affiliations
                Department of Molecular Biology, University of Wyoming
                Author notes
                [* ]Corresponding author: E-mail: liberles@ 123456uwyo.edu .

                Associate editor: Bill Martin

                [†]

                These authors have contributed equally

                Article
                10.1093/gbe/evr093
                3205605
                21920903
                c16938d7-f627-4746-adf3-4f869b52b6a3
                © The Author(s) 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 September 2011
                Categories
                Research Articles

                Genetics
                stochastic model,subfunctionalization,gene duplication,neofunctionalization,dosage balance,protein–protein interaction network

                Comments

                Comment on this article