4
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Current malaria infection, previous malaria exposure, and clinical profiles and outcomes of COVID-19 in a setting of high malaria transmission: an exploratory cohort study in Uganda

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The potential effects of SARS-CoV-2 and Plasmodium falciparum co-infection on host susceptibility and pathogenesis remain unknown. We aimed to establish the prevalence of malaria and describe the clinical characteristics of SARS-CoV-2 and P falciparum co-infection in a high-burden malaria setting.

          Methods

          This was an exploratory prospective, cohort study of patients with COVID-19 who were admitted to hospital in Uganda. Patients of all ages with a PCR-confirmed diagnosis of SARS-CoV-2 infection who had provided informed consent or assent were consecutively enrolled from treatment centres in eight hospitals across the country and followed up until discharge or death. Clinical assessments and blood sampling were done at admission for all patients. Malaria diagnosis in all patients was done by rapid diagnostic tests, microscopy, and molecular methods. Previous P falciparum exposure was determined with serological responses to a panel of P falciparum antigens assessed using a multiplex bead assay. Additional evaluations included complete blood count, markers of inflammation, and serum biochemistries. The main outcome was overall prevalence of malaria infection and malaria prevalence by age (including age categories of 0–20 years, 21–40 years, 41–60 years, and >60 years). The frequency of symptoms was compared between patients with COVID-19 with P falciparum infection versus those without P falciparum infection. The frequency of comorbidities and COVID-19 clinical severity and outcomes was compared between patients with low previous exposure to P falciparum versus those with high previous exposure to P falciparum. The effect of previous exposure to P falciparum on COVID-19 clinical severity and outcomes was also assessed among patients with and those without comorbidities.

          Findings

          Of 600 people with PCR-confirmed SARS-CoV-2 infection enrolled from April 15, to Oct 30, 2020, 597 (>99%) had complete information and were included in our analyses. The majority (502 [84%] of 597) were male individuals with a median age of 36 years (IQR 28–47). Overall prevalence of P falciparum infection was 12% (95% CI 9·4–14·6; 70 of 597 participants), with highest prevalence in the age groups of 0–20 years (22%, 8·7–44·8; five of 23 patients) and older than 60 years (20%, 10·2–34·1; nine of 46 patients). Confusion (four [6%] of 70 patients vs eight [2%] of 527 patients; p=0·040) and vomiting (four [6%] of 70 patients vs five [1%] of 527 patients; p=0·014] were more frequent among patients with P falciparum infection than those without. Patients with low versus those with high previous P falciparum exposure had a increased frequency of severe or critical COVID-19 clinical presentation (16 [30%] of 53 patients vs three [5%] of 56 patients; p=0·0010) and a higher burden of comorbidities, including diabetes (12 [23%] of 53 patients vs two [4%] of 56 patients; p=0·0010) and heart disease (seven [13%] of 53 patients vs zero [0%] of 56 patients; p=0·0030). Among patients with no comorbidities, those with low previous P falciparum exposure still had a higher proportion of cases of severe or critical COVID-19 than did those with high P falciparum exposure (six [18%] of 33 patients vs one [2%] of 49 patients; p=0·015). Multivariate analysis showed higher odds of unfavourable outcomes in patients who were older than 60 years (adjusted OR 8·7, 95% CI 1·0–75·5; p=0·049).

          Interpretation

          Although patients with COVID-19 with P falciparum co-infection had a higher frequency of confusion and vomiting, co-infection did not seem deleterious. The association between low previous malaria exposure and severe or critical COVID-19 and other adverse outcomes will require further study. These preliminary descriptive observations highlight the importance of understanding the potential clinical and therapeutic implications of overlapping co-infections.

          Funding

          Malaria Consortium (USA).

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The trinity of COVID-19: immunity, inflammation and intervention

            Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract — severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies

              Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is the pathogen that causes coronavirus disease 2019 (COVID-19). As of 25 May 2020, the outbreak of COVID-19 has caused 347,192 deaths around the world. The current evidence showed that severely ill patients tend to have a high concentration of pro-inflammatory cytokines, such as interleukin (IL)-6, compared to those who are moderately ill. The high level of cytokines also indicates a poor prognosis in COVID-19. Besides, excessive infiltration of pro-inflammatory cells, mainly involving macrophages and T-helper 17 cells, has been found in lung tissues of patients with COVID-19 by postmortem examination. Recently, increasing studies indicate that the “cytokine storm” may contribute to the mortality of COVID-19. Here, we summarize the clinical and pathologic features of the cytokine storm in COVID-19. Our review shows that SARS-Cov-2 selectively induces a high level of IL-6 and results in the exhaustion of lymphocytes. The current evidence indicates that tocilizumab, an IL-6 inhibitor, is relatively effective and safe. Besides, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, intravenous immunoglobulin, and antimalarial agents could be potentially useful and reliable approaches to counteract cytokine storm in COVID-19 patients.
                Bookmark

                Author and article information

                Journal
                Lancet Microbe
                Lancet Microbe
                The Lancet. Microbe
                The Author(s). Published by Elsevier Ltd.
                2666-5247
                25 October 2021
                25 October 2021
                Affiliations
                [a ]Global Technical Team, Malaria Consortium, London, UK
                [b ]Technical Department, Malaria Consortium, Kampala, Uganda
                [c ]Directorate of Health, Ministry of Defense, Kampala, Uganda
                [d ]Central Public Health Laboratories, Ministry of Health, Kampala, Uganda
                [e ]National Malaria Control Division, Ministry of Health, Kampala, Uganda
                [f ]Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
                [g ]Department of Medicine, Mulago Specialist Referral Hospital, Kampala, Uganda
                [h ]Department of Paediatrics and Child Health, Mulago Specialist Referral Hospital, Kampala, Uganda
                [i ]Global Technical Team, Malaria Consortium, Raleigh, NC, USA
                Author notes
                [* ]Correspondence to: Dr Jane Achan, Global Technical Team, Malaria Consortium, London E2 9DA, UK
                Article
                S2666-5247(21)00240-8
                10.1016/S2666-5247(21)00240-8
                8545833
                34723228
                c1651d34-9b22-49a8-84be-acdfc6ec69d6
                © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article