22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wheat genetic improvement by integration of advanced genomic technologies is one way of improving productivity. To facilitate the breeding of economically important traits in wheat, SNP loci and underlying candidate genes associated with the 36 agro-morphological traits were studied in a diverse panel of 404 genotypes. By using Breeders’ 35K Axiom array in a comprehensive genome-wide association study covering 4364.79 cM of the wheat genome and applying a compressed mixed linear model, a total of 146 SNPs (-log 10 P ≥ 4) were found associated with 23 traits out of 36 traits studied explaining 3.7–47.0% of phenotypic variance. To reveal this a subset of 260 genotypes was characterized phenotypically for six quantitative traits [days to heading (DTH), days to maturity (DTM), plant height (PH), spike length (SL), awn length (Awn_L), and leaf length (Leaf_L)] under five environments. Gene annotations mined ∼38 putative candidate genes which were confirmed using tissue and stage specific gene expression data from RNA Seq. We observed strong co-localized loci for four traits (glume pubescence, SL, PH, and awn color) on chromosome 1B (24.64 cM) annotated five putative candidate genes. This study led to the discovery of hitherto unreported loci for some less explored traits (such as leaf sheath wax, awn attitude, and glume pubescence) besides the refined chromosomal regions of known loci associated with the traits. This study provides valuable information of the genetic loci and their potential genes underlying the traits such as awn characters which are being considered as important contributors toward yield enhancement.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Article: not found

          R/qtl: QTL mapping in experimental crosses

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural variation in GS5 plays an important role in regulating grain size and yield in rice.

            Increasing crop yield is one of the most important goals of plant science research. Grain size is a major determinant of grain yield in cereals and is a target trait for both domestication and artificial breeding(1). We showed that the quantitative trait locus (QTL) GS5 in rice controls grain size by regulating grain width, filling and weight. GS5 encodes a putative serine carboxypeptidase and functions as a positive regulator of grain size, such that higher expression of GS5 is correlated with larger grain size. Sequencing of the promoter region in 51 rice accessions from a wide geographic range identified three haplotypes that seem to be associated with grain width. The results suggest that natural variation in GS5 contributes to grain size diversity in rice and may be useful in improving yield in rice and, potentially, other crops(2).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and functional partitioning of bread wheat chromosome 3B.

              We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                25 April 2019
                2019
                : 10
                : 527
                Affiliations
                [1] 1ICAR-Indian Institute of Wheat and Barley Research , Karnal, India
                [2] 2ICAR-Indian Agricultural Statistics Research Institute , New Delhi, India
                [3] 3Lokbharti-Sanosara Centre , Bhavnagar, India
                Author notes

                Edited by: Dragan Perovic, Julius Kühn-Institut, Germany

                Reviewed by: Marion S. Röder, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Germany; Awais Rasheed, International Maize and Wheat Improvement Center, Mexico; Šurlan-Momirović, University of Belgrade, Serbia

                *Correspondence: Dinesh Kumar, dinesh.kumar@ 123456icar.gov.in Ratan Tiwari, ratan.tiwari@ 123456icar.gov.in

                These authors have contributed equally to this work

                This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00527
                6511880
                31134105
                c0fda0fb-14a7-4510-b5a2-b849761cffb5
                Copyright © 2019 Sheoran, Jaiswal, Kumar, Raghav, Sharma, Pawar, Paul, Iquebal, Jaiswar, Sharma, Singh, Singh, Gupta, Kumar, Angadi, Rai, Singh, Kumar and Tiwari.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 December 2018
                : 04 April 2019
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 117, Pages: 20, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                35k axiom array,agro-morphological,gwas,snp,wheat
                Plant science & Botany
                35k axiom array, agro-morphological, gwas, snp, wheat

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content255

                Cited by29

                Most referenced authors2,530