7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens ( Aspergillus flavus and Aspergillus ochraceus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The grain contamination by Aspergillus spp. has been a serious issue. This study exhibited the excellent antifungal effects of the essential oil compounds (EOCs) geraniol and citral against common grain pathogens ( A. flavus and A. ochraceus) in vitro and in situ. The inhibitory mechanisms were also evaluated from the perspective of cell membrane permeability, reactive oxygen species (ROS) generation, and Aspergillus spp. growth-related gene expression. Meanwhile, the combined effects of EOCs in the vapor phase and modified atmosphere packaging (MAP) were examined to find an alternative preservation method for controlling Aspergillus spp. The results indicated that citral exhibited the antifungal activity mainly by downregulating the sporulation- and growth-related genes for both pathogens. Geraniol displayed inhibitory effectiveness against A. flavus predominantly by inducing the intracellular ROS accumulation and showed toxicity against A. ochraceus principally by changing cell membrane permeability. Furthermore, the synthetic effects of EOCs and MAP (75% CO 2 and 25% N 2) induced better grain quality than the current commercial fumigant AlP. These findings reveal that EOCs have potential to be a novel grain preservative for further application.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Role of reactive oxygen species (ROS) in apoptosis induction.

          Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy.

            The essential oil of Melaleuca alternifolia (tea tree) has broad-spectrum antimicrobial activity. The mechanisms of action of tea tree oil and three of its components, 1,8-cineole, terpinen-4-ol, and alpha-terpineol, against Staphylococcus aureus ATCC 9144 were investigated. Treatment with these agents at their MICs and two times their MICs, particularly treatment with terpinen-4-ol and alpha-terpineol, reduced the viability of S. aureus. None of the agents caused lysis, as determined by measurement of the optical density at 620 nm, although cells became disproportionately sensitive to subsequent autolysis. Loss of 260-nm-absorbing material occurred after treatment with concentrations equivalent to the MIC, particularly after treatment with 1,8-cineole and alpha-terpineol. S. aureus organisms treated with tea tree oil or its components at the MIC or two times the MIC showed a significant loss of tolerance to NaCl. When the agents were tested at one-half the MIC, only 1,8-cineole significantly reduced the tolerance of S. aureus to NaCl. Electron microscopy of terpinen-4-ol-treated cells showed the formation of mesosomes and the loss of cytoplasmic contents. The predisposition to lysis, the loss of 260-nm-absorbing material, the loss of tolerance to NaCl, and the altered morphology seen by electron microscopy all suggest that tea tree oil and its components compromise the cytoplasmic membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factors that interact with the antibacterial action of thyme essential oil and its active constituents.

              The viable counts of Salmonella typhimurium on nutrient agar (NA) decreased upon the addition of either the essential oil of thyme or its constituent thymol, especially under anaerobic conditions. Antagonistic effects of thymol against Staphylococcus aureus were also greater under anaerobic conditions. In contrast to the phenolic constituents of the oil, thymol and carvacrol, the chemically related terpenes p-cymene and gamma-terpinene had no antagonistic effects against Salm. typhimurium. The addition of Desferal to NA counteracted the antibacterial effects of both thyme oil and thymol. No support was obtained, however, for a possible role of iron in the oxygen-related antibacterial action of the thyme oil and thymol or for the observed effect of Desferal. In the presence of thymol, the viable counts of Salm. typhimurium obtained on a minimal medium (MM) were lower than those obtained on NA. Addition of bovine serum albumin (BSA) neutralized the antibacterial action of thymol. It is suggested that the effects of BSA or Desferal are due to their ability to bind phenolic compounds through their amino and hydroxylamine groups, respectively, thus preventing complexation reactions between the oil phenolic constituents and bacterial membrane proteins. This hypothesis is supported by the marked decrease in the viable counts of Salm. typhimurium caused by either thyme oil or thymol when the pH of the medium was changed from 6.5 to 5.5 or the concentration of Tween 80 in the medium was reduced.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                22 August 2018
                September 2018
                : 23
                : 9
                : 2108
                Affiliations
                [1 ]College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; 21613043@ 123456zju.edu.cn (X.T.); shzoyelin@ 123456126.com (Y.-L.S.)
                [2 ]Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; yajietang@ 123456hotmail.com
                Author notes
                [* ]Correspondence: vivianzhou11@ 123456zju.edu.cn ; Tel.: +86-571-889-82398
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-4125-2234
                Article
                molecules-23-02108
                10.3390/molecules23092108
                6225121
                30131466
                c0f97069-421c-4523-9851-4e805d0f7dcf
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 July 2018
                : 20 August 2018
                Categories
                Article

                antifungal activity,geraniol,citral,aspergillus,relative electric conductivity,reactive oxygen species,gene expression,modified atmosphere packaging

                Comments

                Comment on this article