6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nitrate reductases in Hydrogenobacter thermophilus with evolutionarily ancient features: distinctive localization and electron transfer : Nitrate reductases of Hydrogenobacter thermophilus

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of the structure of ferredoxin based on living relics of primitive amino Acid sequences.

          The structure of present-day ferredoxin, with its simple, inorganic active site and its functions basic to photon-energy utilization, suggests the incorporation of its prototype into metabolism very early during biochemical evolution, even before complex proteins and the complete modern genetic code existed. The information in the amino acid sequence of ferredoxin enables us to propose a detailed reconstruction of its evolutionary history. Ferredoxin has evolved by doubling a shorter protein, which may have contained only eight of the simplest amino acids. This shorter ancestor in turn developed from a repeating sequence of the amino acids alanine, aspartic acid or proline, serine, and glycine. We explain the persistence of living relics of this primordial structure by invoking a conservative principle in evolutionary biochemistry: The processes of natural selection severely inhibit any change a well-adapted system on which several other essential components depend.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrate and periplasmic nitrate reductases.

            The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional, biochemical and genetic diversity of prokaryotic nitrate reductases.

              Prokaryotic nitrate reduction can serve a number of physiological roles and can be catalysed by a number of biochemically distinct nitrate reductases. Three distinct nitrate reductase classes can be indentified in prokaryotes, NAS, NAR and NAP. NAS is located in the cytoplasmic compartment and participates in nitrogen assimilation. NAR is usually a three-subunit complex anchored to the cytoplasmic face of the membrane with its active site located in the cytoplasmic compartment and is involved in anaerobic nitrate respiration. NAP is a two-subunit complex, located in the periplasmic compartment, that is coupled to quinol oxidation via a membrane anchored tetraheme cytochrome. It shows considerable functional flexibility by participating in anaerobic respiration or redox energy dissipation depending on the organism in which it is found. The members of all three classes of enzymes bind the bis-molybdopterin guanine dinucleotide cofactor at the active site, but they differ markedly in the number and nature of cofactors used to transfer electrons to this site. Analysis of prokaryotic genome sequences available at the time of writing reveals that the different nitrate reductases are phylogenetically widespread.
                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Molecular Microbiology
                Wiley
                0950382X
                October 2017
                October 2017
                August 09 2017
                : 106
                : 1
                : 129-141
                Affiliations
                [1 ]Department of Biotechnology; The University of Tokyo; Tokyo Japan
                [2 ]Earth-Life Science Institute, Tokyo Institute of Technology; Tokyo Japan
                Article
                10.1111/mmi.13756
                28752517
                c0d99b3b-57f8-4970-bbcc-8ef6160b8c3d
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article