21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Can BECCS deliver sustainable and resource efficient negative emissions?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Negative emissions technologies (NETs) in general and bioenergy with CO 2 capture and storage (BECCS) in particular are commonly regarded as vital yet controversial to meeting our climate goals. In this contribution we show how the sustainability and carbon efficiency, or otherwise, of BECCS depends entirely on the choices made throughout the BECCS supply chain.

          Abstract

          Negative emissions technologies (NETs) in general and bioenergy with CO 2 capture and storage (BECCS) in particular are commonly regarded as vital yet controversial to meeting our climate goals. In this contribution we present a whole-systems analysis of the BECCS value chain associated with cultivation, harvesting, transport and conversion in dedicated biomass power stations in conjunction with CCS, of a range of biomass resources – both dedicated energy crops (miscanthus, switchgrass, short rotation coppice willow), and agricultural residues (wheat straw). We explicitly consider the implications of sourcing the biomass from different regions, climates and land types. The water, carbon and energy footprints of each value chain were calculated, and their impact on the overall system water, carbon and power efficiencies was evaluated. An extensive literature review was performed and a statistical analysis of the available data is presented. In order to describe the dynamic greenhouse gas balance of such a system, a yearly accounting of the emissions was performed over the lifetime of a BECCS facility, and the carbon “breakeven time” and lifetime net CO 2 removal from the atmosphere were determined. The effects of direct and indirect land use change were included, and were found to be a key determinant of the viability of a BECCS project. Overall we conclude that, depending on the conditions of its deployment, BECCS could lead to both carbon positive and negative results. The total quantity of CO 2 removed from the atmosphere over the project lifetime and the carbon breakeven time were observed to be highly case specific. This has profound implications for the policy frameworks required to incentivise and regulate the widespread deployment of BECCS technology. The results of a sensitivity analysis on the model combined with the investigation of alternate supply chain scenarios elucidated key levers to improve the sustainability of BECCS: (1) measuring and limiting the impacts of direct and indirect land use change, (2) using carbon neutral power and organic fertilizer, (3) minimising biomass transport, and prioritising sea over road transport, (4) maximising the use of carbon negative fuels, and (5) exploiting alternative biomass processing options, e.g., natural drying or torrefaction. A key conclusion is that, regardless of the biomass and region studied, the sustainability of BECCS relies heavily on intelligent management of the supply chain.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Energy production from biomass (Part 1): Overview of biomass.

          The use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuel energy sources. The type of biomass required is largely determined by the energy conversion process and the form in which the energy is required. In the first of three papers, the background to biomass production (in a European climate) and plant properties is examined. In the second paper, energy conversion technologies are reviewed, with emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to generate electricity. The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass. The third paper considers particular gasification technologies and their potential for biomass gasification.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Carbon capture and storage update

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An overview of CO2 capture technologies

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2017
                2017
                : 10
                : 6
                : 1389-1426
                Affiliations
                [1 ]Centre for Environmental Policy
                [2 ]Imperial College London
                [3 ]London
                [4 ]UK
                [5 ]Centre for Process Systems Engineering
                Article
                10.1039/C7EE00465F
                c0c625ba-b46d-4ed5-8d8e-fad2d632fa47
                © 2017
                History

                Comments

                Comment on this article