23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spherical lignin particles: a review on their sustainability and applications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A critical review on spherical lignin nanoparticles highlighting aspects associated to their shape, performance in applications, sustainability, stability and degradation.

          Abstract

          There is an increased interest in renewable carbon as a source of materials, where lignin is expected to play a prominent role. This stems, partially, from new regulations aiming to achieve a cleaner and safer environment. Lignin, as a polyaromatic plant-derived biomolecule, is not only abundant but widely accessible in industrial streams. Due to recent developments in production scalability as well as promising application prospects, nanoscaled lignin particles have recently generated interest in the research and industrial communities. This review describes the main routes to prepare spherical lignin particles, highlighting aspects associated to their shape and topology as well as performance. We discuss the use of spherical lignin particles as dispersants and in the formulation of coatings, adhesives and composites, focusing on the advantages of the spherical shape and nanoscaled size. The state of the particles is furthermore compared in terms of their applicability in dry and wet forms. Finally, we discuss the sustainability, stability and degradation of lignin particles, which are issues that are critically important for any prospective use.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Double-slit photoelectron interference in strong-field ionization of the neon dimer

          Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding biophysicochemical interactions at the nano-bio interface.

            Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of nanoparticle size, shape, and surface chemistry on biological systems.

              An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                May 11 2020
                2020
                : 22
                : 9
                : 2712-2733
                Affiliations
                [1 ]Aalto University
                [2 ]School of Chemical Engineering
                [3 ]Department of Bioproducts and Biosystems
                [4 ]Aalto
                [5 ]Finland
                Article
                10.1039/D0GC00096E
                c0b6870b-2361-4d08-afe2-f14de160a480
                © 2020

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article