5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classic Psychedelic Drugs: Update on Biological Mechanisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Renewed interest in the effects of psychedelics in the treatment of psychiatric disorders warrants a better understanding of the neurobiological mechanisms underlying the effects of these substances. During the past two decades, state-of-the-art studies of animals and humans have yielded new important insights into the molecular, cellular, and systems-level actions of psychedelic drugs. These efforts have revealed that psychedelics affect primarily serotonergic receptor subtypes located in cortico-thalamic and cortico-cortical feedback circuits of information processing. Psychedelic drugs modulate excitatory-inhibitory balance in these circuits and can participate in neuroplasticity within brain structures critical for the integration of information relevant to sensation, cognition, emotions, and the narrative of self. Neuroimaging studies showed that characteristic dimensions of the psychedelic experience obtained through subjective questionnaires as well as alterations in self-referential processing and emotion regulation obtained through neuropsychological tasks are associated with distinct changes in brain activity and connectivity patterns at multiple-system levels. These recent results suggest that changes in self-experience, emotional processing, and social cognition may contribute to the potential therapeutic effects of psychedelics.

          Related collections

          Most cited references232

          • Record: found
          • Abstract: found
          • Article: not found

          The free-energy principle: a unified brain theory?

          A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The brain's default mode network.

            The brain's default mode network consists of discrete, bilateral and symmetrical cortical areas, in the medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains. Its discovery was an unexpected consequence of brain-imaging studies first performed with positron emission tomography in which various novel, attention-demanding, and non-self-referential tasks were compared with quiet repose either with eyes closed or with simple visual fixation. The default mode network consistently decreases its activity when compared with activity during these relaxed nontask states. The discovery of the default mode network reignited a longstanding interest in the significance of the brain's ongoing or intrinsic activity. Presently, studies of the brain's intrinsic activity, popularly referred to as resting-state studies, have come to play a major role in studies of the human brain in health and disease. The brain's default mode network plays a central role in this work.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial

              Cancer patients often develop chronic, clinically significant symptoms of depression and anxiety. Previous studies suggest that psilocybin may decrease depression and anxiety in cancer patients. The effects of psilocybin were studied in 51 cancer patients with life-threatening diagnoses and symptoms of depression and/or anxiety. This randomized, double-blind, cross-over trial investigated the effects of a very low (placebo-like) dose (1 or 3 mg/70 kg) vs. a high dose (22 or 30 mg/70 kg) of psilocybin administered in counterbalanced sequence with 5 weeks between sessions and a 6-month follow-up. Instructions to participants and staff minimized expectancy effects. Participants, staff, and community observers rated participant moods, attitudes, and behaviors throughout the study. High-dose psilocybin produced large decreases in clinician- and self-rated measures of depressed mood and anxiety, along with increases in quality of life, life meaning, and optimism, and decreases in death anxiety. At 6-month follow-up, these changes were sustained, with about 80% of participants continuing to show clinically significant decreases in depressed mood and anxiety. Participants attributed improvements in attitudes about life/self, mood, relationships, and spirituality to the high-dose experience, with >80% endorsing moderately or greater increased well-being/life satisfaction. Community observer ratings showed corresponding changes. Mystical-type psilocybin experience on session day mediated the effect of psilocybin dose on therapeutic outcomes. Trial Registration ClinicalTrials.gov identifier: NCT00465595
                Bookmark

                Author and article information

                Journal
                Pharmacopsychiatry
                Pharmacopsychiatry
                10.1055/s-00000054
                Pharmacopsychiatry
                Georg Thieme Verlag KG (Rüdigerstraße 14, 70469 Stuttgart, Germany )
                0176-3679
                1439-0795
                May 2022
                25 January 2022
                1 May 2022
                : 55
                : 3
                : 121-138
                Affiliations
                [1 ]Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Zurich, Switzerland
                Author notes
                Correspondence Dr. Franz X. Vollenweider Psychiatric University Hospital ZurichPsychiatric Research CenterLenggstrasse 318032 ZurichSwitzerland vollen@ 123456bli.uzh.ch
                Article
                phpsy2021-05-1038
                10.1055/a-1721-2914
                9110100
                35079988
                c0abf06b-cb97-426f-ba4a-ed0368792f9a
                The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.

                History
                : 26 May 2021
                : 08 November 2021
                : 22 November 2021
                Categories
                Review
                XIVth Symposium of the Task Force Therapeutic Drug Monitoring of the AGNP

                psychedelics,psilocybin,whole-brain models,neuroplasticity,lsd

                Comments

                Comment on this article