7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Repair of naturally occurring mismatches can induce mutations in flanking DNA

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ‘Normal’ genomic DNA contains hundreds of mismatches that are generated daily by the spontaneous deamination of C (U/G) and methyl-C (T/G). Thus, a mutagenic effect of their repair could constitute a serious genetic burden. We show here that while mismatches introduced into human cells on an SV40-based episome were invariably repaired, this process induced mutations in flanking DNA at a significantly higher rate than no mismatch controls. Most mutations involved the C of TpC, the substrate of some single strand-specific APOBEC cytidine deaminases, similar to the mutations that can typify the ‘mutator phenotype’ of numerous tumors. siRNA knockdowns and chromatin immunoprecipitation showed that TpC preferring APOBECs mediate the mutagenesis, and siRNA knockdowns showed that both the base excision and mismatch repair pathways are involved. That naturally occurring mispairs can be converted to mutators, represents an heretofore unsuspected source of genetic changes that could underlie disease, aging, and evolutionary change.

          DOI: http://dx.doi.org/10.7554/eLife.02001.001

          eLife digest

          The inherent chemical instability of the four bases that are found in DNA leads to our genetic material being damaged on a daily basis. The sequence of these bases codes the genetic instructions necessary for all cellular functions, so damaged bases must be efficiently recognized and accurately repaired. The base excision repair pathway carries out these functions.

          However, there are some circumstances in which random changes to the genetic code can be beneficial. In immune cells, for example, these changes enhance the diversity of antibodies generated to fight bacteria and viruses. In immune cells, a second repair pathway—the mismatch repair pathway—hijacks the base excision repair pathway. This gives enzymes belonging to the APOBEC family access to the DNA that is undergoing repair, and these enzymes change cytosine bases to uracil bases. Subsequent processing steps can lead to different bases substituted for the original cytosine. The recent discovery that APOBEC enzymes are abundant in other types of cells raised the possibility that these enzymes could be significant source of mutations in the DNA of cells where such mutations are not welcome.

          To explore this possibility Chen et al. deliberately introduced a number of mutations (that are normally repaired by the base excision repair pathway) into non-immune human cells and observed what happened. The mutations were repaired, but the number of mutations in neighboring bases increased by a statistically significant amount. In particular, most of these mutations involved a cytosine base that was preceded by a thymine base. Chen et al. also showed that both APOBEC and the mismatch repair pathway are involved, as is the case for the mutations caused by APOBEC enzymes in immune cells. Similar APOBEC mutations are known to be involved in cancer.

          The model system developed by Chen et al. not only shows that normally error-free DNA repair can be involved in generating these mutations, but also used to obtain a better understanding of these processes and thereby provide new insights in cancer biology.

          DOI: http://dx.doi.org/10.7554/eLife.02001.002

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          PCNA, the maestro of the replication fork.

          Inheritance requires genome duplication, reproduction of chromatin and its epigenetic information, mechanisms to ensure genome integrity, and faithful transmission of the information to progeny. Proliferating cell nuclear antigen (PCNA)-a cofactor of DNA polymerases that encircles DNA-orchestrates several of these functions by recruiting crucial players to the replication fork. Remarkably, many factors that are involved in replication-linked processes interact with a particular face of PCNA and through the same interaction domain, indicating that these interactions do not occur simultaneously during replication. Switching of PCNA partners may be triggered by affinity-driven competition, phosphorylation, proteolysis, and modification of PCNA by ubiquitin and SUMO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.

            Cytosine methylation is the major covalent modification of mammalian genomic DNA and plays important roles in transcriptional regulation. The molecular mechanism underlying the enzymatic removal of this epigenetic mark, however, remains elusive. Here, we show that 5-methylcytosine (5mC) hydroxylase TET1, by converting 5mCs to 5-hydroxymethylcytosines (5hmCs), promotes DNA demethylation in mammalian cells through a process that requires the base excision repair pathway. Though expression of the 12 known human DNA glycosylases individually did not enhance removal of 5hmCs in mammalian cells, demethylation of both exogenously introduced and endogenous 5hmCs is promoted by the AID (activation-induced deaminase)/APOBEC (apolipoprotein B mRNA-editing enzyme complex) family of cytidine deaminases. Furthermore, Tet1 and Apobec1 are involved in neuronal activity-induced, region-specific, active DNA demethylation and subsequent gene expression in the dentate gyrus of the adult mouse brain in vivo. Our study suggests a TET1-induced oxidation-deamination mechanism for active DNA demethylation in mammals. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcription-coupled DNA repair: two decades of progress and surprises.

              Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                29 April 2014
                2014
                : 3
                : e02001
                Affiliations
                [1 ]Section on Genomic Structure and Function, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, United States
                Harvard Medical School , United States
                Harvard Medical School , United States
                Author notes
                [* ]For correspondence: avf@ 123456helix.nih.gov
                Article
                02001
                10.7554/eLife.02001
                3999860
                24843013
                c0983840-b089-411d-aafd-10c16750f1cf

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 04 December 2013
                : 19 March 2014
                Funding
                Funded by: Intramural Research Program of the NIH
                Award Recipient :
                The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biochemistry
                Genes and Chromosomes
                Custom metadata
                0.7
                The repair of spontaneous DNA damage can introduce mutators that lead to further genetic changes, which could underlie evolutionary change, disease and aging.

                Life sciences
                dna repair,mutagenesis,apobec deaminase,human
                Life sciences
                dna repair, mutagenesis, apobec deaminase, human

                Comments

                Comment on this article