28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetes and beta cell function: from mechanisms to evaluation and clinical implications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes is a complex, heterogeneous condition that has beta cell dysfunction at its core. Many factors (e.g. hyperglycemia/glucotoxicity, lipotoxicity, autoimmunity, inflammation, adipokines, islet amyloid, incretins and insulin resistance) influence the function of pancreatic beta cells. Chronic hyperglycaemia may result in detrimental effects on insulin synthesis/secretion, cell survival and insulin sensitivity through multiple mechanisms: gradual loss of insulin gene expression and other beta-cell specific genes; chronic endoplasmic reticulum stress and oxidative stress; changes in mitochondrial number, morphology and function; disruption in calcium homeostasis. In the presence of hyperglycaemia, prolonged exposure to increased free fatty acids result in accumulation of toxic metabolites in the cells (“lipotoxicity”), finally causing decreased insulin gene expression and impairment of insulin secretion. The rest of the factors/mechanisms which impact on the course of the disease are also discusses in detail.

          The correct assessment of beta cell function requires a concomitant quantification of insulin secretion and insulin sensitivity, because the two variables are closely interrelated. In order to better understand the fundamental pathogenetic mechanisms that contribute to disease development in a certain individual with diabetes, additional markers could be used, apart from those that evaluate beta cell function.

          The aim of the paper was to overview the relevant mechanisms/factors that influence beta cell function and to discuss the available methods of its assessment. In addition, clinical considerations are made regarding the therapeutical options that have potential protective effects on beta cell function/mass by targeting various underlying factors and mechanisms with a role in disease progression.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of incretin hormones.

          Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote beta cell proliferation and inhibit apoptosis, leading to expansion of beta cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes.

            S E Kahn (2003)
            The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes have been debated extensively. The concept that a feedback loop governs the interaction of the insulin-sensitive tissues and the beta cell as well as the elucidation of the hyperbolic relationship between insulin sensitivity and insulin secretion explains why insulin-resistant subjects exhibit markedly increased insulin responses while those who are insulin-sensitive have low responses. Consideration of this hyperbolic relationship has helped identify the critical role of beta-cell dysfunction in the development of Type 2 diabetes and the demonstration of reduced beta-cell function in high risk subjects. Furthermore, assessments in a number of ethnic groups emphasise that beta-cell function is a major determinant of oral glucose tolerance in subjects with normal and reduced glucose tolerance and that in all populations the progression from normal to impaired glucose tolerance and subsequently to Type 2 diabetes is associated with declining insulin sensitivity and beta-cell function. The genetic and molecular basis for these reductions in insulin sensitivity and beta-cell function are not fully understood but it does seem that body-fat distribution and especially intra-abdominal fat are major determinants of insulin resistance while reductions in beta-cell mass contribute to beta-cell dysfunction. Based on our greater understanding of the relative roles of insulin resistance and beta-cell dysfunction in Type 2 diabetes, we can anticipate advances in the identification of genes contributing to the development of the disease as well as approaches to the treatment and prevention of Type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage.

              Insulin resistance contributes to the pathophysiology of diabetes and is a hallmark of obesity, metabolic syndrome, and many cardiovascular diseases. Therefore, quantifying insulin sensitivity/resistance in humans and animal models is of great importance for epidemiological studies, clinical and basic science investigations, and eventual use in clinical practice. Direct and indirect methods of varying complexity are currently employed for these purposes. Some methods rely on steady-state analysis of glucose and insulin, whereas others rely on dynamic testing. Each of these methods has distinct advantages and limitations. Thus, optimal choice and employment of a specific method depends on the nature of the studies being performed. Established direct methods for measuring insulin sensitivity in vivo are relatively complex. The hyperinsulinemic euglycemic glucose clamp and the insulin suppression test directly assess insulin-mediated glucose utilization under steady-state conditions that are both labor and time intensive. A slightly less complex indirect method relies on minimal model analysis of a frequently sampled intravenous glucose tolerance test. Finally, simple surrogate indexes for insulin sensitivity/resistance are available (e.g., QUICKI, HOMA, 1/insulin, Matusda index) that are derived from blood insulin and glucose concentrations under fasting conditions (steady state) or after an oral glucose load (dynamic). In particular, the quantitative insulin sensitivity check index (QUICKI) has been validated extensively against the reference standard glucose clamp method. QUICKI is a simple, robust, accurate, reproducible method that appropriately predicts changes in insulin sensitivity after therapeutic interventions as well as the onset of diabetes. In this Frontiers article, we highlight merits, limitations, and appropriate use of current in vivo measures of insulin sensitivity/resistance.
                Bookmark

                Author and article information

                Journal
                Biochem Med (Zagreb)
                Biochem Med (Zagreb)
                Biochemia Medica
                Croatian Society of Medical Biochemistry and Laboratory Medicine
                1330-0962
                1846-7482
                October 2013
                15 October 2013
                : 23
                : 3
                : 266-280
                Affiliations
                [1 ]Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
                [2 ]Department of Clinical Biochemistry-Immunology, University of Medicine and Pharmacy, Târgu Mureş, Romania
                [3 ]Department of Clinical Laboratory, Emergency County Clinical Hospital, Târgu Mureş, Romania
                Author notes
                [* ]Corresponding author: simonacernea@ 123456yahoo.com
                Article
                biochem-23-3-266-5
                10.11613/BM.2013.033
                3900074
                24266296
                c097583d-5aee-48b5-a6af-f8fed78d00bc
                ©Copyright by Croatian Society of Medical Biochemistry and Laboratory Medicine.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 December 2012
                : 24 May 2013
                Categories
                Review

                diabetes mellitus,pancreatic beta cells,hyperglycemia

                Comments

                Comment on this article