32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR technologies and the search for the PAM-free nuclease

      review-article
      1 , 1 , 2 , 3 ,
      Nature Communications
      Nature Publishing Group UK
      Synthetic biology, CRISPR-Cas9 genome editing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ever-expanding set of CRISPR technologies and their programmable RNA-guided nucleases exhibit remarkable flexibility in DNA targeting. However, this flexibility comes with an ever-present constraint: the requirement for a protospacer adjacent motif (PAM) flanking each target. While PAMs play an essential role in self/nonself discrimination by CRISPR-Cas immune systems, this constraint has launched a far-reaching expedition for nucleases with relaxed PAM requirements. Here, we review ongoing efforts toward realizing PAM-free nucleases through natural ortholog mining and protein engineering. We also address potential consequences of fully eliminating PAM recognition and instead propose an alternative nuclease repertoire covering all possible PAM sequences.

          Abstract

          One of the key limitations of CRISPR-Cas-based genome editing techniques is the PAM dependency. Here, the authors review ongoing efforts towards realizing PAM-free nucleases, address potential consequences of eliminating PAM recognition, and propose an alternative nuclease repertoire covering all possible PAM sequences.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Multiplex genome engineering using CRISPR/Cas systems.

          Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA-guided human genome engineering via Cas9.

            Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targeting rates of 10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced pluripotent stem cells. We show that this process relies on CRISPR components; is sequence-specific; and, upon simultaneous introduction of multiple gRNAs, can effect multiplex editing of target loci. We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Search-and-replace genome editing without double-strand breaks or donor DNA

              Summary Most genetic variants that contribute to disease 1 are challenging to correct efficiently and without excess byproducts 2–5 . Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed >175 edits in human cells including targeted insertions, deletions, and all 12 types of point mutations without requiring double-strand breaks or donor DNA templates. We applied prime editing in human cells to correct efficiently and with few byproducts the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA), to install a protective transversion in PRNP, and to precisely insert various tags and epitopes into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, complementary strengths and weaknesses compared to base editing, and much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle can correct up to 89% of known genetic variants associated with human diseases.
                Bookmark

                Author and article information

                Contributors
                chase.beisel@helmholtz-hiri.de
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                22 January 2021
                22 January 2021
                2021
                : 12
                : 555
                Affiliations
                [1 ]GRID grid.40803.3f, ISNI 0000 0001 2173 6074, Department of Chemical & Biomolecular Engineering, , North Carolina State University, ; Raleigh, NC 27695-7905 USA
                [2 ]GRID grid.498164.6, Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), ; 97080 Würzburg, Germany
                [3 ]GRID grid.8379.5, ISNI 0000 0001 1958 8658, Medical Faculty, , University of Würzburg, ; 97080 Würzburg, Germany
                Author information
                http://orcid.org/0000-0002-7878-0612
                http://orcid.org/0000-0003-0650-9943
                Article
                20633
                10.1038/s41467-020-20633-y
                7822910
                33483498
                c09088d2-80ab-4edd-907c-14aa85676880
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 September 2020
                : 3 December 2020
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                synthetic biology,crispr-cas9 genome editing
                Uncategorized
                synthetic biology, crispr-cas9 genome editing

                Comments

                Comment on this article