Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to systematically review the literature concerning the integration of multimodality imaging with artificial intelligence methods for visualization of tumor cell infiltration in glioma patients. The review was performed in accordance with the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines. The literature search was conducted in PubMed, Embase, The Cochrane Library and Web of Science and yielded 1304 results. 14 studies were included in the qualitative analysis. The reference standard for tumor infiltration was either histopathology or recurrence on image follow-up. Critical assessment was performed according to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS2). All studies concluded their findings to be of significant value for future clinical practice. Diagnostic test accuracy reached an area under the curve of 0.74–0.91 reported in six studies. There was no consensus with regard to included image modalities, models or training and test strategies. The integration of artificial intelligence with multiparametric imaging shows promise for visualizing tumor cell infiltration in glioma patients. This approach can possibly optimize surgical resection margins and help provide personalized radiotherapy planning.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement

          David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

            Glioblastoma, the most common primary brain tumor in adults, is usually rapidly fatal. The current standard of care for newly diagnosed glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy. In this trial we compared radiotherapy alone with radiotherapy plus temozolomide, given concomitantly with and after radiotherapy, in terms of efficacy and safety. Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients. The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.

              In 2003, the QUADAS tool for systematic reviews of diagnostic accuracy studies was developed. Experience, anecdotal reports, and feedback suggested areas for improvement; therefore, QUADAS-2 was developed. This tool comprises 4 domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed in terms of risk of bias, and the first 3 domains are also assessed in terms of concerns regarding applicability. Signalling questions are included to help judge risk of bias. The QUADAS-2 tool is applied in 4 phases: summarize the review question, tailor the tool and produce review-specific guidance, construct a flow diagram for the primary study, and judge bias and applicability. This tool will allow for more transparent rating of bias and applicability of primary diagnostic accuracy studies.
                Bookmark

                Author and article information

                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                25 March 2021
                April 2021
                : 11
                : 4
                : 592
                Affiliations
                [1 ]Department of Diagnostic Radiology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark; Mbn@ 123456dadnet.dk (M.B.N.); Adam.espe.hansen@ 123456regionh.dk (A.E.H.)
                [2 ]Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
                Author notes
                Article
                diagnostics-11-00592
                10.3390/diagnostics11040592
                8067218
                33806195
                c0847f46-1fc3-4a7c-96bb-a1e72899c96a
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 March 2021
                : 23 March 2021
                Categories
                Review

                artificial intelligence,glioma,glioblastoma,magnetic resonance imaging,multi-modality imaging,advanced imaging

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content330

                Cited by9

                Most referenced authors1,498