3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring the Hubble Tension and Spatial Curvature from the Ages of Old Astrophysical Objects

      ,
      The Astrophysical Journal
      American Astronomical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We use the age measurements of 114 old astrophysical objects (OAO) in the redshift range 0 ≲ z ≲ 8 to explore the Hubble tension. The age of the universe at any z is inversely proportional to the Hubble constant, H 0, so requiring the universe to be older than the OAO it contains at any z will lead to an upper limit on H 0. Assuming flat ΛCDM and setting a Gaussian prior on the matter density parameter Ω m = 0.315 ± 0.007 informed by Planck, we obtain a 95% confidence level upper limit of H 0 < 70.6 km s −1 Mpc −1, representing a 2 σ tension with the measurement using the local distance ladder. We find, however, that the inferred upper limit on H 0 depends quite sensitively on the prior for Ω m, and the Hubble tension between early-time and local measurements of H 0 may be due in part to the inference of both Ω m and H 0 in Planck, while the local measurement uses only H 0. The age-redshift data may also be used for cosmological model comparisons. We find that the R h = ct universe accounts well for the data, with a reasonable upper limit on H 0, while Einstein–de Sitter fails to pass the cosmic-age test. Finally, we present a model-independent estimate of the spatial curvature using the ages of 61 galaxies and the luminosity distances of 1048 Pantheon Type Ia supernovae. This analysis suggests that the geometry of the universe is marginally consistent with spatial flatness at a confidence level of 1.6 σ, characterized as Ω k = 0.43 0.27 + 0.27 .

          Related collections

          Most cited references121

          • Record: found
          • Abstract: not found
          • Article: not found

          emcee: The MCMC Hammer

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Planck 2018 results: VI. Cosmological parameters

            We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ω c h 2 = 0.120 ± 0.001, baryon density Ω b h 2 = 0.0224 ± 0.0001, scalar spectral index n s = 0.965 ± 0.004, and optical depth τ = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 θ * = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H 0 = (67.4 ± 0.5) km s −1 Mpc −1 ; matter density parameter Ω m = 0.315 ± 0.007; and matter fluctuation amplitude σ 8 = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N eff = 2.99 ± 0.17, in agreement with the Standard Model prediction N eff = 3.046, and find that the neutrino mass is tightly constrained to ∑ m ν < 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ΛCDM at over 2 σ , which pulls some parameters that affect the lensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Ω K = 0.001 ± 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w 0 = −1.03 ± 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r 0.002 < 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations. The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 σ , tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

                Bookmark

                Author and article information

                Contributors
                Journal
                The Astrophysical Journal
                ApJ
                American Astronomical Society
                0004-637X
                1538-4357
                April 06 2022
                April 01 2022
                April 06 2022
                April 01 2022
                : 928
                : 2
                : 165
                Article
                10.3847/1538-4357/ac562c
                c0671bd7-a702-4bc2-9da5-a9ac6a75e0b8
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article