41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

      review-article
      1 , 2 , *
      Neural Plasticity
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y 1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y 1 receptors may have therapeutic potential against cognitive disturbances in these states.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

          Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interneurons of the hippocampus.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The P2Y12 receptor regulates microglial activation by extracellular nucleotides.

              Microglia are primary immune sentinels of the CNS. Following injury, these cells migrate or extend processes toward sites of tissue damage. CNS injury is accompanied by release of nucleotides, serving as signals for microglial activation or chemotaxis. Microglia express several purinoceptors, including a G(i)-coupled subtype that has been implicated in ATP- and ADP-mediated migration in vitro. Here we show that microglia from mice lacking G(i)-coupled P2Y(12) receptors exhibit normal baseline motility but are unable to polarize, migrate or extend processes toward nucleotides in vitro or in vivo. Microglia in P2ry(12)(-/-) mice show significantly diminished directional branch extension toward sites of cortical damage in the living mouse. Moreover, P2Y(12) expression is robust in the 'resting' state, but dramatically reduced after microglial activation. These results imply that P2Y(12) is a primary site at which nucleotides act to induce microglial chemotaxis at early stages of the response to local CNS injury.
                Bookmark

                Author and article information

                Journal
                Neural Plast
                Neural Plast
                NP
                Neural Plasticity
                Hindawi Publishing Corporation
                2090-5904
                1687-5443
                2016
                16 March 2016
                : 2016
                : 1207393
                Affiliations
                1Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
                2Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
                Author notes

                Academic Editor: Francisco Ciruela

                Article
                10.1155/2016/1207393
                4812485
                27069691
                c027125c-7dfb-4c7c-a080-80536a9d092d
                Copyright © 2016 S. J. Guzman and Z. Gerevich.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2015
                : 10 February 2016
                Categories
                Review Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content344

                Cited by35

                Most referenced authors1,565