23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Biology of the Pituitary Adenoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All endocrine glands are susceptible to neoplastic growth, yet the health consequences of these neoplasms differ between endocrine tissues. Pituitary neoplasms are highly prevalent and overwhelmingly benign, exhibiting a spectrum of diverse behaviors and impact on health. To understand the clinical biology of these common yet often innocuous neoplasms, we review pituitary physiology and adenoma epidemiology, pathophysiology, behavior, and clinical consequences. The anterior pituitary develops in response to a range of complex brain signals integrating with intrinsic ectodermal cell transcriptional events that together determine gland growth, cell type differentiation, and hormonal production, in turn maintaining optimal endocrine health. Pituitary adenomas occur in 10% of the population; however, the overwhelming majority remain harmless during life. Triggered by somatic or germline mutations, disease-causing adenomas manifest pathogenic mechanisms that disrupt intrapituitary signaling to promote benign cell proliferation associated with chromosomal instability. Cellular senescence acts as a mechanistic buffer protecting against malignant transformation, an extremely rare event. It is estimated that fewer than one-thousandth of all pituitary adenomas cause clinically significant disease. Adenomas variably and adversely affect morbidity and mortality depending on cell type, hormone secretory activity, and growth behavior. For most clinically apparent adenomas, multimodal therapy controlling hormone secretion and adenoma growth lead to improved quality of life and normalized mortality. The clinical biology of pituitary adenomas, and particularly their benign nature, stands in marked contrast to other tumors of the endocrine system, such as thyroid and neuroendocrine tumors.

          Graphical Abstract

          Graphical Abstract

          Related collections

          Most cited references406

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Cancer Genome Atlas Pan-Cancer analysis project.

            The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Integrated genomic characterization of papillary thyroid carcinoma.

              (2014)
              Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D, and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors, and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Endocr Rev
                Endocr Rev
                edrv
                Endocrine Reviews
                Oxford University Press (US )
                0163-769X
                1945-7189
                December 2022
                08 April 2022
                08 April 2022
                : 43
                : 6
                : 1003-1037
                Affiliations
                Cedars-Sinai Medical Center , Los Angeles, CA, USA
                Brigham & Women’s Hospital and Harvard Medical School , Boston, MA, USA
                University of Virginia School of Medicine , Charlottesville, VA, USA
                Université de Paris, Assistance Publique–Hôpitaux de Paris , Paris, France
                Hospital Pablo Tobon Uribe and Clinica Medellin – Grupo Quirónsalud , Medellin, Colombia
                Hospices Civils de Lyon and Lyon 1 University , Lyon, France
                University Hospital of LMU, Ludwig-Maximilians-Universität , Munich, Germany
                Sahlgrenska University Hospital & Institute of Medicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
                University of Liège , Liège, Belgium
                Oregon Health & Science University , Portland, OR, USA
                San Raffaele Vita-Salute University and IRCCS Hospital , Milan, Italy
                University of Oxford , Oxford, UK
                The Garvan Institute of Medical Research and St. Vincents Hospital , Sydney, Australia
                Author notes
                Correspondence: Shlomo Melmed, MD, Cedars-Sinai Medical Center, 8700 Beverly Blvd, NT2015, Los Angeles, CA 90048, USA. Email: melmed@ 123456csmc.edu .
                Author information
                https://orcid.org/0000-0002-2355-3447
                https://orcid.org/0000-0001-8661-6727
                https://orcid.org/0000-0002-9517-338X
                https://orcid.org/0000-0002-9817-9875
                https://orcid.org/0000-0003-3484-8440
                https://orcid.org/0000-0001-6783-3398
                Article
                bnac010
                10.1210/endrev/bnac010
                9695123
                35395078
                c020f36c-0e09-4385-ab5c-16c77f70c818
                © The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 17 September 2021
                : 29 March 2022
                : 09 May 2022
                Page count
                Pages: 35
                Categories
                Review
                AcademicSubjects/MED00250

                pituitary adenoma,acromegaly,prolactinoma,cushing’s disease,aggressive pituitary tumor,hypothalamus

                Comments

                Comment on this article