4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Zero-inflated and hurdle models of count data with extra zeros: examples from an HIV-risk reduction intervention trial.

      The American journal of drug and alcohol abuse
      Adult, Bias (Epidemiology), Community Health Services, Female, Follow-Up Studies, HIV Infections, prevention & control, Humans, Models, Statistical, Poisson Distribution, Risk Reduction Behavior, Risk-Taking, Substance-Related Disorders, rehabilitation, Unsafe Sex, statistics & numerical data

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In clinical trials of behavioral health interventions, outcome variables often take the form of counts, such as days using substances or episodes of unprotected sex. Classically, count data follow a Poisson distribution; however, in practice such data often display greater heterogeneity in the form of excess zeros (zero-inflation) or greater spread in the values (overdispersion) or both. Greater sample heterogeneity may be especially common in community-based effectiveness trials, where broad eligibility criteria are implemented to achieve a generalizable sample. This article reviews the characteristics of Poisson model and the related models that have been developed to handle overdispersion (negative binomial (NB) model) or zero-inflation (zero-inflated Poisson (ZIP) and Poisson hurdle (PH) models) or both (zero-inflated negative binomial (ZINB) and negative binomial hurdle (NBH) models). All six models were used to model the effect of an HIV-risk reduction intervention on the count of unprotected sexual occasions (USOs), using data from a previously completed clinical trial among female patients (N = 515) participating in community-based substance abuse treatment (Tross et al. Effectiveness of HIV/AIDS sexual risk reduction groups for women in substance abuse treatment programs: Results of NIDA Clinical Trials Network Trial. J Acquir Immune Defic Syndr 2008; 48(5):581-589). Goodness of fit and the estimates of treatment effect derived from each model were compared. The ZINB model provided the best fit, yielding a medium-sized effect of intervention. This article illustrates the consequences of applying models with different distribution assumptions on the data. If a model used does not closely fit the shape of the data distribution, the estimate of the effect of the intervention may be biased, either over- or underestimating the intervention effect.

          Related collections

          Author and article information

          Comments

          Comment on this article