10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ERH Interacts With EIF2α and Regulates the EIF2α/ATF4/CHOP Pathway in Bladder Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is a lack of research on the molecular interaction of the enhancers of rudimentary homolog (ERH) in bladder cancer (BC) cells. This study aimed to determine the interacting proteins of ERH in human T24 cells.

          Methods

          First, the ERH gene was overexpressed in human T24 cells. Coimmunoprecipitation (co-IP) and shotgun mass spectrometry (MS) analyses were performed to obtain a list of proteins that interact with ERH. Subsequently, bioinformatic analyses with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) studies were performed to analyze the ERH-interactive protein list (ERH-IPL). Then, we selected one of the interacting proteins, EIF2α for verification. An immunofluorescence colocalization assay was performed to validate the co-expression of the selected protein, and the binding sites of the two proteins were predicted by ZDOCK technology. Finally, PCR analysis on the downstream molecules of the interacting protein was performed for verification.

          Results

          ERH protein was successfully overexpressed in human T24 cells. We obtained a list of 205 proteins that might directly or indirectly interact with the ERH protein by mass spectrometric analysis. The bioinformatic analysis showed that ERH-interacting proteins were related to “ribonucleoprotein complex”, “ATPase activity”, “nuclear speck”, and “translation factor activity, RNA binding”. We further identified one of the key genes, EIF2S1, and confirmed that the corresponding protein EIF2α is co-expressed and may bind with ERH in human T24 cells. The mRNA levels of molecules ATF4 and CHOP were found to be upregulated by ERH.

          Conclusion

          ERH protein affects “ribonucleoprotein complex”, “ATPase activity”, “nuclear speck”, and “translation factor activity, RNA binding”. The ERH protein can interact with EIF2α and regulate the EIF2α-ATF4/CHOP signaling pathway in human T24 cells.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining cisplatin eligibility in patients with muscle-invasive bladder cancer

            The current treatment paradigm for muscle-invasive bladder cancer (MIBC) consists of cisplatin-based neoadjuvant chemotherapy followed by local definitive therapy, or local definitive therapy alone for cisplatin-ineligible patients. Given that MIBC has a high propensity for distant relapse and is a chemotherapy-sensitive disease, under-utilization of chemotherapy is associated with suboptimal cure rates. Cisplatin eligibility criteria are defined for patients with metastatic bladder cancer by the Galsky criteria, which include creatinine clearance ≥60 ml/min. However, consensus is still lacking regarding cisplatin eligibility criteria in the neoadjuvant, curative MIBC setting, which continues to represent a substantial barrier to the standardization of patient care and clinical trial design. Jiang and colleagues accordingly suggest an algorithm for assessing cisplatin eligibility in patients with MIBC. Instead of relying on an absolute renal function threshold, their algorithm emphasizes a multidisciplinary and patient-centred approach. They also propose mitigation strategies to minimize the risk of cisplatin-induced nephrotoxicity in selected patients with impaired renal function. This new framework is aimed at reducing the inappropriate exclusion of some patients from cisplatin-based neoadjuvant chemotherapy (which leads to under-treatment) and harmonizing clinical trial design, which could lead to improved overall outcomes in patients with MIBC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionarily conserved protein ERH controls CENP-E mRNA splicing and is required for the survival of KRAS mutant cancer cells.

              Cancers with Ras mutations represent a major therapeutic problem. Recent RNAi screens have uncovered multiple nononcogene addiction pathways that are necessary for the survival of Ras mutant cells. Here, we identify the evolutionarily conserved gene enhancer of rudimentary homolog (ERH), in which depletion causes greater toxicity in cancer cells with mutations in the small GTPase KRAS compared with KRAS WT cells. ERH interacts with the spliceosome protein SNRPD3 and is required for the mRNA splicing of the mitotic motor protein CENP-E. Loss of ERH leads to loss of CENP-E and consequently, chromosome congression defects. Gene expression profiling indicates that ERH is required for the expression of multiple cell cycle genes, and the gene expression signature resulting from ERH down-regulation inversely correlates with KRAS signatures. Clinically, tumor ERH expression is inversely associated with survival of colorectal cancer patients whose tumors harbor KRAS mutations. Together, these findings identify a role of ERH in mRNA splicing and mitosis, and they provide evidence that KRAS mutant cancer cells are dependent on ERH for their survival.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                14 June 2022
                2022
                : 12
                : 871687
                Affiliations
                [1] 1Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College , Jiangsu, China
                [2] 2STEM Academic Department, Wyoming Seminary , Kinston, PA, United States
                [3] 3Graduate School, Bengbu Medical College , Bengbu, China
                [4] 4College of Pharmacy and Health Sciences, St. John’s University , Queens, NY, United States
                Author notes

                Edited by: Mantang Qiu, Peking University People’s Hospital, China

                Reviewed by: Larisa Litovchick, Virginia Commonwealth University, United states; Ganesan Muthusamy, Periyar University, India; Zhaoliang Li, University of Utah, United States

                *Correspondence: Cong-hui Han, 479920288@ 123456qq.com ; Zhe-sheng Chen, chenz@ 123456stjohns.edu

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2022.871687
                9239699
                35774124
                c0184019-3442-4e05-968f-c6b14d8bd7fb
                Copyright © 2022 Pang, Dong, Hao, Shi, Zhang, Chen, Feng, Ma, Xu, Pan, Chen and Han

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 February 2022
                : 13 May 2022
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 23, Pages: 11, Words: 5410
                Funding
                Funded by: Jiangsu Province Key Laboratory of Anesthesiology , doi 10.13039/501100012219;
                Award ID: BE2017635, BE2019637
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 81774089, 82004100
                Funded by: Xuzhou Medical University , doi 10.13039/501100012217;
                Award ID: XYFY2020016, XYFY2020026
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                erh protein,bladder cancer (bc),protein–protein interaction,eif2α,eif2α-atf4/chop pathway

                Comments

                Comment on this article