8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The intricate NAFLD pathogenesis is summarized by the multiple-hits hypothesis, which combines all the environmental and genetic factors that promote the development of NAFLD into a single scenario. Among these, bacterial lipopolysaccharides (LPS) are derived from the overgrowth of Gram-negative bacteria and translocated mainly as a consequence of enhanced intestinal permeability. Furthermore, oxidative stress is increased in NAFLD as a consequence of reactive oxygen species (ROS) overproduction and a shortage of endogenous antioxidant molecules, and it is promoted by the interaction between LPS and the Toll-like receptor 4 system. Interestingly, oxidative stress, which has previously been described as being overexpressed in cardiovascular disease, could represent the link between LPS and the increased cardiovascular risk in NAFLD subjects. To date, the only effective strategy for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH) is the loss of at least 5% body weight in overweight and/or obese subjects. However, the dose-dependent effects of multispecies probiotic supplementation on the serum LPS level and cardiometabolic profile in obese postmenopausal women were demonstrated. In addition, many antibiotics have regulatory effects on intestinal microbiota and were able to reduce serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor alpha (TNF-α) in NASH animal models. Regarding the oxidant status, a Mediterranean diet has been reported to reduce oxidant stress, while vitamin E at high daily dosages induced the resolution of NASH in 36% of treated patients. Silymarin had the positive effect of reducing transaminase levels in NAFLD patients and long-term treatment may also decrease fibrosis and slow liver disease progression in NASH. Finally, the influence of nutraceuticals on gut microbiota and oxidant stress in NAFLD patients has not yet been well elucidated and there are insufficient data either to support or refuse their use in these subjects.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of NAFLD development and therapeutic strategies

          There has been a rise in the prevalence of nonalcoholic fatty liver disease (NAFLD), paralleling a worldwide increase in diabetes and metabolic syndrome. NAFLD, a continuum of liver abnormalities from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), has a variable course but can lead to cirrhosis and liver cancer. Here we review the pathogenic and clinical features of NAFLD, its major comorbidities, clinical progression and risk of complications and in vitro and animal models of NAFLD enabling refinement of therapeutic targets that can accelerate drug development. We also discuss evolving principles of clinical trial design to evaluate drug efficacy and the emerging targets for drug development that involve either single agents or combination therapies intended to arrest or reverse disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oxidative stress, aging, and diseases

            Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the normal gut microbiota.

              Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                10 September 2020
                September 2020
                : 12
                : 9
                : 2762
                Affiliations
                [1 ]I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; domenico.ferro@ 123456uniroma1.it (D.F.); daniele.pastori@ 123456uniroma1.it (D.P.); nicholas.cocomello@ 123456gmail.com (N.C.); alessandracolantoni@ 123456libero.it (A.C.); maria.delben@ 123456uniroma1.it (M.D.B.)
                [2 ]Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; francesco.angelico@ 123456uniroma1.it
                Author notes
                [* ]Correspondence: Francesco.baratta@ 123456uniroma1.it ; Tel.: +39-0649972249
                Author information
                https://orcid.org/0000-0001-5222-4477
                https://orcid.org/0000-0003-1708-272X
                https://orcid.org/0000-0001-6357-5213
                https://orcid.org/0000-0002-4922-4318
                https://orcid.org/0000-0003-4330-6379
                https://orcid.org/0000-0002-9372-3923
                https://orcid.org/0000-0003-1199-8454
                Article
                nutrients-12-02762
                10.3390/nu12092762
                7551294
                32927776
                c0118ec3-0b58-49b9-ac0a-170247f040c4
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 August 2020
                : 07 September 2020
                Categories
                Review

                Nutrition & Dietetics
                non-alcoholic fatty liver disease,lipopolysaccharide,oxidative stress,cardiovascular risk

                Comments

                Comment on this article