5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The gaze of a social monkey is perceptible to conspecifics and predators but not prey

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eye gaze is an important source of information for animals, implicated in communication, cooperation, hunting and antipredator behaviour. Gaze perception and its cognitive underpinnings are much studied in primates, but the specific features that are used to estimate gaze can be difficult to isolate behaviourally. We photographed 13 laboratory-housed tufted capuchin monkeys ( Sapajus [Cebus] apella) to quantify chromatic and achromatic contrasts between their iris, pupil, sclera and skin. We used colour vision models to quantify the degree to which capuchin eye gaze is discriminable to capuchins, their predators and their prey. We found that capuchins, regardless of their colour vision phenotype, as well as their predators, were capable of effectively discriminating capuchin gaze across ecologically relevant distances. Their prey, in contrast, were not capable of discriminating capuchin gaze, even under relatively ideal conditions. These results suggest that specific features of primate eyes can influence gaze perception, both within and across species.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study

          Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            In search of the visual pigment template

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern

              Summary Quantitative measurements of colour, pattern and morphology are vital to a growing range of disciplines. Digital cameras are readily available and already widely used for making these measurements, having numerous advantages over other techniques, such as spectrometry. However, off‐the‐shelf consumer cameras are designed to produce images for human viewing, meaning that their uncalibrated photographs cannot be used for making reliable, quantitative measurements. Many studies still fail to appreciate this, and of those scientists who are aware of such issues, many are hindered by a lack of usable tools for making objective measurements from photographs. We have developed an image processing toolbox that generates images that are linear with respect to radiance from the RAW files of numerous camera brands and can combine image channels from multispectral cameras, including additional ultraviolet photographs. Images are then normalised using one or more grey standards to control for lighting conditions. This enables objective measures of reflectance and colour using a wide range of consumer cameras. Furthermore, if the camera's spectral sensitivities are known, the software can convert images to correspond to the visual system (cone‐catch values) of a wide range of animals, enabling human and non‐human visual systems to be modelled. The toolbox also provides image analysis tools that can extract luminance (lightness), colour and pattern information. Furthermore, all processing is performed on 32‐bit floating point images rather than commonly used 8‐bit images. This increases precision and reduces the likelihood of data loss through rounding error or saturation of pixels, while also facilitating the measurement of objects with shiny or fluorescent properties. All cameras tested using this software were found to demonstrate a linear response within each image and across a range of exposure times. Cone‐catch mapping functions were highly robust, converting images to several animal visual systems and yielding data that agreed closely with spectrometer‐based estimates. Our imaging toolbox is freely available as an addition to the open source ImageJ software. We believe that it will considerably enhance the appropriate use of digital cameras across multiple areas of biology, in particular researchers aiming to quantify animal and plant visual signals.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Funding acquisitionRole: SupervisionRole: Writing – review & editing
                Role: Funding acquisitionRole: MethodologyRole: SoftwareRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Journal
                Proc Biol Sci
                Proc Biol Sci
                RSPB
                royprsb
                Proceedings of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8452
                1471-2954
                June 8, 2022
                June 1, 2022
                June 1, 2022
                : 289
                : 1976
                : 20220194
                Affiliations
                [ 1 ] Department of Ecology and Conservation Biology, Texas A&M University, , College Station, TX, USA
                [ 2 ] Department of Comparative Medicine, UT MD Anderson Cancer Center, , Bastrop, TX, USA
                [ 3 ] Centre for Ecology and Conservation, University of Exeter, , Exeter, UK
                Author notes

                Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5994504.

                Author information
                http://orcid.org/0000-0002-3135-6945
                http://orcid.org/0000-0001-9071-2594
                http://orcid.org/0000-0002-4193-6695
                Article
                rspb20220194
                10.1098/rspb.2022.0194
                9156918
                35642370
                c006feb8-c053-440b-9dc2-84a85307cefd
                © 2022 The Authors.

                Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : January 31, 2022
                : May 4, 2022
                Funding
                Funded by: National Science Foundation, http://dx.doi.org/10.13039/100000001;
                Award ID: 1926327
                Funded by: Texas A&M AgriLife Research;
                Funded by: College of Agriculture and Life Sciences at Texas A&M University;
                Categories
                1001
                42
                60
                202
                Ecology
                Research Articles
                Custom metadata
                June 8, 2022

                Life sciences
                colour vision,eye morphology,gaze perception,iris,sclera,tufted capuchin
                Life sciences
                colour vision, eye morphology, gaze perception, iris, sclera, tufted capuchin

                Comments

                Comment on this article