11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3′UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found

          Cancer Statistics, 2017.

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the "epidemic of diagnosis." Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017;67:7-30. © 2017 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accessories to the crime: functions of cells recruited to the tumor microenvironment.

            Mutationally corrupted cancer (stem) cells are the driving force of tumor development and progression. Yet, these transformed cells cannot do it alone. Assemblages of ostensibly normal tissue and bone marrow-derived (stromal) cells are recruited to constitute tumorigenic microenvironments. Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types. Their contributory functions to hallmark capabilities are increasingly well understood, as are the reciprocal communications with neoplastic cancer cells that mediate their recruitment, activation, programming, and persistence. This enhanced understanding presents interesting new targets for anticancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oncomirs - microRNAs with a role in cancer.

              MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
                Bookmark

                Author and article information

                Contributors
                Zhangbg@wfmc.edu.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                1 December 2021
                1 December 2021
                December 2021
                : 12
                : 12
                : 1120
                Affiliations
                [1 ]GRID grid.268079.2, ISNI 0000 0004 1790 6079, Department of Pathology, , Weifang Medical University, ; Weifang, Shandong China
                [2 ]GRID grid.268079.2, ISNI 0000 0004 1790 6079, Department of Pathology, , Affiliated Hospital of Weifang Medical University, ; Weifang, Shandong China
                [3 ]GRID grid.268079.2, ISNI 0000 0004 1790 6079, Department of Pharmacology, , Weifang Medical University, ; Weifang, Shandong China
                [4 ]GRID grid.268079.2, ISNI 0000 0004 1790 6079, Department of Medicine Research Center, , Weifang Medical University, ; Weifang, Shandong China
                [5 ]Department of Oncology, Maternal and Child Health Care Hospital of Zibo, Zibo, Shandong China
                [6 ]GRID grid.268079.2, ISNI 0000 0004 1790 6079, Department of Medical Oncology, , Affiliated Hospital of Weifang Medical University, ; Weifang, Shandong China
                Author information
                http://orcid.org/0000-0002-2355-6461
                Article
                4409
                10.1038/s41419-021-04409-w
                8636636
                34853307
                bff1dc4a-0b2f-4930-a9db-5334d71939f6
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 August 2021
                : 6 November 2021
                : 15 November 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81872163
                Award ID: 81672631
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Cell biology
                breast cancer,single-molecule biophysics
                Cell biology
                breast cancer, single-molecule biophysics

                Comments

                Comment on this article