14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Icariside II overcomes TRAIL resistance of melanoma cells through ROS-mediated downregulation of STAT3/cFLIP signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, many melanoma cells show weak responses to TRAIL. Here, we investigated whether Icariside II (IS), an active component of Herba Epimedii, could potentiate antitumor effects of TRAIL in melanoma cells. Melanoma cells were treated with IS and/or TRAIL and cell death, apoptosis and signal transduction were analyzed. We showed that IS promoted TRAIL-induced cell death and apoptosis in A375 melanoma cells. Mechanistically, IS reduced the expression levels of cFLIP in a phospho-STAT3 (pSTAT3)-dependent manner. Ectopic expression of STAT3 abolished IS-induced cFLIP down-regulation and the associated potentiation of TRAIL-mediated cell death. Moreover, IS-induced reactive oxygen species (ROS) production preceded down-regulation of pSTAT3/cFLIP via activating AKT, and the consequent sensitization of cells to TRAIL. We also found that IS treatment down-regulated cFLIP via ROS-mediated NF-κB pathway. In addition, IS converted TRAIL-resistant melanoma MeWo and SK-MEL-28 cells into TRAIL-sensitive cells. Taken together, our results indicated that IS potentiated TRAIL-induced apoptosis through ROS-mediated down-regulation of STAT3/cFLIP signaling.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Executioner caspase-3 and caspase-7 are functionally distinct proteases.

          Members of the caspase family of cysteine proteases play central roles in coordinating the stereotypical events that occur during apoptosis. Because the major executioner caspases, caspase-3 and caspase-7, exhibit almost indistinguishable activity toward certain synthetic peptide substrates, this has led to the widespread view that these proteases occupy functionally redundant roles within the cell death machinery. However, the distinct phenotypes of mice deficient in either of these caspases, as well as mice deficient in both, is at odds with this view. These distinct phenotypes could be related to differences in the relative expression levels of caspase-3 and caspase-7 in vivo, or due to more fundamental differences between these proteases in terms of their ability to cleave natural substrates. Here we show that caspase-3 and caspase-7 exhibit differential activity toward multiple substrate proteins, including Bid, XIAP, gelsolin, caspase-6, and cochaperone p23. Caspase-3 was found to be generally more promiscuous than caspase-7 and appears to be the major executioner caspase during the demolition phase of apoptosis. Our observations provide a molecular basis for the different phenotypes seen in mice lacking either caspase and indicate that these proteases occupy nonredundant roles within the cell death machinery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting JAK kinase in solid tumors: emerging opportunities and challenges.

            Various human malignancies are characterized by excessive activation of the Janus family of cytoplasmic tyrosine kinases (JAK) and their associated transcription factors STAT3 and STAT5. In the majority of solid tumors, this occurs in response to increased abundance of inflammatory cytokines in the tumor microenvironment prominently produced by infiltrating innate immune cells. Many of these cytokines share common receptor subunits and belong to the interleukin (IL)-6/IL-11, IL-10/IL-22 and IL-12/IL-23 families. Therapeutic inhibition of the JAK/STAT3 pathway potentially offers considerable benefit owing to the capacity of JAK/STAT3 signaling to promote cancer hallmarks in the tumor and its environment, including proliferation, survival, angiogenesis, tumor metabolism while suppressing antitumor immunity. This is further emphasized by the current successful clinical applications of JAK-specific small molecule inhibitors for the treatment of inflammatory disorders and hematopoietic malignancies. Here we review current preclinical applications for JAK inhibitors for the treatment of solid cancers in mice, with a focus on the most common malignancies emanating from oncogenic transformation of the epithelial mucosa in the stomach and colon. Emerging data with small molecule JAK-specific adenosine triphosphate-binding analogs corroborate genetic findings and suggest that interference with the JAK/STAT3 pathway may suppress the growth of the most common forms of sporadic colon cancers that arise from mutations of the APC tumor suppressor gene. Likewise inhibition of cytokine-dependent activation of the JAK/STAT3 pathway may also afford orthogonal treatment opportunities for other oncogene-addicted cancer cells that have gained drug resistance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A new modality for immunosuppression: targeting the JAK/STAT pathway.

                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                9 August 2016
                13 July 2016
                : 7
                : 32
                : 52218-52229
                Affiliations
                1 Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
                2 Department of Chinese Medicine, Changhai Hospital, The Second Military Medicine University, Shanghai, China
                3 Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
                Author notes
                Correspondence to: Zhi-Ling Yu, zlyu@ 123456hkbu.edu.hk
                Article
                10582
                10.18632/oncotarget.10582
                5239546
                27418138
                bfbab67a-f59d-4e4a-8392-5423ef155daf
                Copyright: © 2016 Du et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 March 2016
                : 30 June 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                melanoma,trail,icariside ii,pstat3,ros
                Oncology & Radiotherapy
                melanoma, trail, icariside ii, pstat3, ros

                Comments

                Comment on this article