25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Temperature and Organism Size—A Biological Law for Ectotherms?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Warming-induced reductions in body size are greater in aquatic than terrestrial species.

            Most ectothermic organisms mature at smaller body sizes when reared in warmer conditions. This phenotypically plastic response, known as the "temperature-size rule" (TSR), is one of the most taxonomically widespread patterns in biology. However, the TSR remains a longstanding life-history puzzle for which no dominant driver has been found. We propose that oxygen supply plays a central role in explaining the magnitude of ectothermic temperature-size responses. Given the much lower oxygen availability and greater effort required to increase uptake in water vs. air, we predict that the TSR in aquatic organisms, especially larger species with lower surface area-body mass ratios, will be stronger than in terrestrial organisms. We performed a meta-analysis of 1,890 body mass responses to temperature in controlled experiments on 169 terrestrial, freshwater, and marine species. This reveals that the strength of the temperature-size response is greater in aquatic than terrestrial species. In animal species of ∼100 mg dry mass, the temperature-size response of aquatic organisms is 10 times greater than in terrestrial organisms (-5.0% °C(-1) vs. -0.5% °C(-1)). Moreover, although the size response of small (<0.1 mg dry mass) aquatic and terrestrial species is similar, increases in species size cause the response to become increasingly negative in aquatic species, as predicted, but on average less negative in terrestrial species. These results support oxygen as a major driver of temperature-size responses in aquatic organisms. Further, the environment-dependent differences parallel latitudinal body size clines, and will influence predicted impacts of climate warming on food production, community structure, and food-web dynamics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Costs of phenotypic plasticity.

              Phenotypically plastic organisms display alternative phenotypes in different environments. It is widely appreciated that possessing alternative phenotypes can affect fitness. However, some investigators have suggested that simply carrying the ability to be plastic could also affect fitness. Evolutionary models suggest that high costs of plasticity could constrain the evolution of optimal phenotypes. However, costs (and limits) of plasticity are primarily hypothetical. Little empirical evidence exists to show that increased plasticity leads to reduced growth and development, leads to increased developmental instability, or limits the ability of organisms to produce more extreme phenotypes. I used half-sib families of larval wood frogs (Rana sylvatica) reared in outdoor mesocosms to examine how tadpoles altered behavioral, morphological, and life-historical traits in response to larval dragonfly predators (Anax longipes). The predators induced lower activity and the development of relatively large tails and small bodies in wood frogs. As a result, wood frogs experienced reduced growth and development. I then examined whether tadpole sibships with higher plasticity experienced fitness costs (above and beyond the costs of expressing a particular phenotype) and whether they were limited in producing extreme phenotypes. Fitness effects of plasticity were widespread. Depending on the trait examined and the environment experienced, increased plasticity had either positive effects, negative effects, or no effects on tadpole mass, development, and survivorship. I found no relationship between increased plasticity and greater developmental instability. There was also no evidence that sibships with increased plasticity produced less extreme phenotypes; the most extreme trait states were always produced by the most plastic genotypes. This work suggests that costs of plasticity may be pervasive in nature and may substantially impact the evolution of optimal phenotypes in organisms that live in heterogeneous environments.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecol Evol
                ece3
                Ecology and Evolution
                Blackwell Publishing Ltd (Oxford, UK )
                2045-7758
                2045-7758
                December 2014
                02 December 2014
                : 4
                : 24
                : 4678-4689
                Affiliations
                Institute of Environmental Sciences, Jagiellonian University Gronostajowa 7, 30-387, Krakow, Poland
                Author notes
                Aleksandra Walczyńska, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. Tel: +48 12 6645193; Fax: +48 12 6646912; E-mail: aleksandra.walczynska@ 123456uj.edu.pl

                Funding Information The study was funded by the Foundation for Polish Science (POMOST/2011-3/12), the Polish National Science Centre (2011/02/A/NZ8/00064) and by Jagiellonian University (DS/INoá/758/2013).

                Article
                10.1002/ece3.1292
                4278820
                25558362
                bfb9040e-7403-4ddd-896a-a79e7183d87c
                © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 June 2014
                : 11 September 2014
                : 22 September 2014
                Categories
                Original Research

                Evolutionary Biology
                biological agent,bulking control,life histories,monogononta,multivariate analysis,oxygen,process characteristics,rotifera,temperature,wastewater purification

                Comments

                Comment on this article