8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Histone Methylation by the Kleefstra Syndrome Protein EHMT1 Mediates Homeostatic Synaptic Scaling

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra-syndrome-associated protein EHMT1 plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vitro and in vivo. Our findings suggest that H3K9me2-mediated changes in chromatin structure govern a repressive program that controls synaptic scaling.

          Related collections

          Author and article information

          Journal
          Neuron
          Neuron
          Elsevier BV
          08966273
          July 2016
          July 2016
          : 91
          : 2
          : 341-355
          Article
          10.1016/j.neuron.2016.06.003
          27373831
          bf8f1f86-26c9-4e4a-993f-8fbb0583caf3
          © 2016
          History

          Comments

          Comment on this article