16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Application of CycleGAN and transfer learning techniques for automated detection of COVID-19 using X-ray images

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus (which is also known as COVID-19) is severely impacting the wellness and lives of many across the globe. There are several methods currently to detect and monitor the progress of the disease such as radiological image from patients’ chests, measuring the symptoms and applying polymerase chain reaction (RT-PCR) test. X-ray imaging is one of the popular techniques used to visualise the impact of the virus on the lungs. Although manual detection of this disease using radiology images is more popular, it can be time-consuming, and is prone to human errors. Hence, automated detection of lung pathologies due to COVID-19 utilising deep learning (Bowles et al.) techniques can assist with yielding accurate results for huge databases. Large volumes of data are needed to achieve generalizable DL models; however, there are very few public databases available for detecting COVID-19 disease pathologies automatically. Standard data augmentation method can be used to enhance the models’ generalizability. In this research, the Extensive COVID-19 X-ray and CT Chest Images Dataset has been used and generative adversarial network (GAN) coupled with trained, semi-supervised CycleGAN (SSA- CycleGAN) has been applied to augment the training dataset. Then a newly designed and finetuned Inception V3 transfer learning model has been developed to train the algorithm for detecting COVID-19 pandemic. The obtained results from the proposed Inception-CycleGAN model indicated Accuracy = 94.2%, Area under Curve = 92.2%, Mean Squared Error = 0.27, Mean Absolute Error = 0.16. The developed Inception-CycleGAN framework is ready to be tested with further COVID-19 X-Ray images of the chest.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Automated detection of COVID-19 cases using deep neural networks with X-ray images

          The novel coronavirus 2019 (COVID-2019), which first appeared in Wuhan city of China in December 2019, spread rapidly around the world and became a pandemic. It has caused a devastating effect on both daily lives, public health, and the global economy. It is critical to detect the positive cases as early as possible so as to prevent the further spread of this epidemic and to quickly treat affected patients. The need for auxiliary diagnostic tools has increased as there are no accurate automated toolkits available. Recent findings obtained using radiology imaging techniques suggest that such images contain salient information about the COVID-19 virus. Application of advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease, and can also be assistive to overcome the problem of a lack of specialized physicians in remote villages. In this study, a new model for automatic COVID-19 detection using raw chest X-ray images is presented. The proposed model is developed to provide accurate diagnostics for binary classification (COVID vs. No-Findings) and multi-class classification (COVID vs. No-Findings vs. Pneumonia). Our model produced a classification accuracy of 98.08% for binary classes and 87.02% for multi-class cases. The DarkNet model was used in our study as a classifier for the you only look once (YOLO) real time object detection system. We implemented 17 convolutional layers and introduced different filtering on each layer. Our model (available at (https://github.com/muhammedtalo/COVID-19)) can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT

            Background Coronavirus disease has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performances. Materials and Methods In this retrospective and multi-center study, a deep learning model, COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT exams for the detection of COVID-19. Community acquired pneumonia (CAP) and other non-pneumonia CT exams were included to test the robustness of the model. The datasets were collected from 6 hospitals between August 2016 and February 2020. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results The collected dataset consisted of 4356 chest CT exams from 3,322 patients. The average age is 49±15 years and there were slightly more male patients than female (1838 vs 1484; p-value=0.29). The per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 114 of 127 (90% [95% CI: 83%, 94%]) and 294 of 307 (96% [95% CI: 93%, 98%]), respectively, with an AUC of 0.96 (p-value<0.001). The per-exam sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175) and 92% (239 of 259), respectively, with an AUC of 0.95 (95% CI: 0.93, 0.97). Conclusions A deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia and other lung diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks

              In this study, a dataset of X-ray images from patients with common bacterial pneumonia, confirmed Covid-19 disease, and normal incidents, was utilized for the automatic detection of the Coronavirus disease. The aim of the study is to evaluate the performance of state-of-the-art convolutional neural network architectures proposed over the recent years for medical image classification. Specifically, the procedure called Transfer Learning was adopted. With transfer learning, the detection of various abnormalities in small medical image datasets is an achievable target, often yielding remarkable results. The datasets utilized in this experiment are two. Firstly, a collection of 1427 X-ray images including 224 images with confirmed Covid-19 disease, 700 images with confirmed common bacterial pneumonia, and 504 images of normal conditions. Secondly, a dataset including 224 images with confirmed Covid-19 disease, 714 images with confirmed bacterial and viral pneumonia, and 504 images of normal conditions. The data was collected from the available X-ray images on public medical repositories. The results suggest that Deep Learning with X-ray imaging may extract significant biomarkers related to the Covid-19 disease, while the best accuracy, sensitivity, and specificity obtained is 96.78%, 98.66%, and 96.46% respectively. Since by now, all diagnostic tests show failure rates such as to raise concerns, the probability of incorporating X-rays into the diagnosis of the disease could be assessed by the medical community, based on the findings, while more research to evaluate the X-ray approach from different aspects may be conducted.
                Bookmark

                Author and article information

                Journal
                Pattern Recognit Lett
                Pattern Recognit Lett
                Pattern Recognition Letters
                Elsevier B.V.
                0167-8655
                0167-8655
                3 December 2021
                3 December 2021
                Affiliations
                [a ]School of Business, University of Southern Queensland, Springfield, QLD 4300, Australia
                [b ]School of Computer Science, Queensland University of Technology, Australia
                [c ]Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
                [d ]Department Bioinformatics and Medical Engineering, Asia University, Taiwan
                [e ]International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan.
                [f ]School of Science and Technology, Singapore University of Social Sciences, Singapore
                Author notes
                [* ]Corresponding Author. Xujuan Zhou Postal address: 37 Sinnathamby Blvd, Springfield Central QLD 4300, University of Southern Queensland, Springfield campus
                Article
                S0167-8655(21)00412-8
                10.1016/j.patrec.2021.11.020
                8641403
                34876763
                bf7b392a-d0ad-4e6b-aedc-4026f632b813
                © 2021 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 21 April 2021
                : 15 October 2021
                : 18 November 2021
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content161

                Cited by19

                Most referenced authors4,070