15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving the efficiency of phosphate rocks combined with phosphate solubilizing Actinomycetota to increase wheat growth under alkaline and acidic soils

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Low availability of phosphorus (P) in both acidic and alkaline soils is a major problem for sustainable improvement in wheat crops yield. Optimization of crops productivity can be achieved by increasing the bioavailability of P by phosphate solubilizing Actinomycetota (PSA). However, their effectiveness may vary with changing agro-climatic conditions. In this regard, a greenhouse experiment was conducted to assess the interaction inoculation of five potential PSA (P16-P18-BC3-BC10 and BC11) and RPs (RP1- RP2-RP3 and RP4) on the growth and yield of wheat crop in unsterilized P- deficient alkaline and acidic soils. Their performance was compared with single super phosphate (TSP) and reactive RP (BG4). The in-vitro tests showed that all PSA colonize wheat root and form a strong biofilm except Streptomyces anulatus strain P16. Our findings revealed that all PSA significantly improve the shoot/root dry weights, spike biomass, chlorophyll contents as well as nutrients uptake in plants fertilized with RP3 and RP4. However, the combined application of Nocardiopsis alba BC11 along with RP4 in alkaline soil, was effective in optimizing wheat yield attributes and improve the yield biomass up to 19.7% as compared to the triple superphosphate (TSP). This study supports the view that the inoculation with Nocardiopsis alba BC11 has a broad RP solubilization and could alleviate the agricultural losses due to P limitation in acidic and alkaline soils.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils

          Phosphorus is the second important key element after nitrogen as a mineral nutrient in terms of quantitative plant requirement. Although abundant in soils, in both organic and inorganic forms, its availability is restricted as it occurs mostly in insoluble forms. The P content in average soil is about 0.05% (w/w) but only 0.1% of the total P is available to plant because of poor solubility and its fixation in soil (Illmer and Schinner, Soil Biol Biochem 27:257-263, 1995). An adequate supply of phosphorus during early phases of plant development is important for laying down the primordia of plant reproductive parts. It plays significant role in increasing root ramification and strength thereby imparting vitality and disease resistance capacity to plant. It also helps in seed formation and in early maturation of crops like cereals and legumes. Poor availability or deficiency of phosphorus (P) markedly reduces plant size and growth. Phosphorus accounts about 0.2 - 0.8% of the plant dry weight. To satisfy crop nutritional requirements, P is usually added to soil as chemical P fertilizer, however synthesis of chemical P fertilizer is highly energy intensive processes, and has long term impacts on the environment in terms of eutrophication, soil fertilility depletion, carbon footprint. Moreover, plants can use only a small amount of this P since 75–90% of added P is precipitated by metal–cation complexes, and rapidly becomes fixed in soils. Such environmental concerns have led to the search for sustainable way of P nutrition of crops. In this regards phosphate-solubilizing microorganisms (PSM) have been seen as best eco-friendly means for P nutrition of crop. Although, several bacterial (pseudomonads and bacilli) and fungal strains (Aspergilli and Penicillium) have been identified as PSM their performance under in situ conditions is not reliable and therefore needs to be improved by using either genetically modified strains or co-inoculation techniques. This review focuses on the diversity of PSM, mechanism of P solubilization, role of various phosphatases, impact of various factors on P solubilization, the present and future scenario of their use and potential for application of this knowledge in managing a sustainable environmental system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices.

            The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plant growth-promoting bacteria as inoculants in agricultural soils

              Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                10 May 2023
                2023
                : 14
                : 1154372
                Affiliations
                [1] 1 AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P) , Benguerir, Morocco
                [2] 2 Laboratory of Microbial Biotechnologies Agrosciences and Environment (BioMAgE), Labelled Unit CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University (UCA) , Marrakech, Morocco
                [3] 3 Laboratory of Agroforestry and Ecology, Assane Seck University (UASZ-UFR ST) , Ziguinchor, Senegal
                [4] 4 African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P) , Laayoune, Morocco
                Author notes

                Edited by: Anoop Kumar Srivastava, Central Citrus Research Institute (ICAR), India

                Reviewed by: Muhammad Yahya Khan, University of Agriculture, Faisalabad, Pakistan; Firoz Ahmad Ansari, Aligarh Muslim University, India

                *Correspondence: Mohamed Hafidi, hafidi@ 123456uca.ac.ma ; Lamfeddal Kouisni, lamfeddal.kouisni@ 123456um6p.ma
                Article
                10.3389/fpls.2023.1154372
                10206120
                37235036
                bf578e87-8d6e-4223-8a88-139f0d2edeaf
                Copyright © 2023 Boubekri, Soumare, Lyamlouli, Ouhdouch, Hafidi and Kouisni

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2023
                : 14 April 2023
                Page count
                Figures: 4, Tables: 6, Equations: 1, References: 73, Pages: 14, Words: 6799
                Funding
                This work was funded by OCP Group- Situation Innovation Group within the framework of the project AS02 (2018-2021).
                Categories
                Plant Science
                Original Research
                Custom metadata
                Plant Nutrition

                Plant science & Botany
                actinomycetota,rock phosphate,wheat plant growth,acid and alkaline soil,nutrient uptake

                Comments

                Comment on this article