2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatial-Channel Attention-Based Class Activation Mapping for Interpreting CNN-Based Image Classification Models

      1 , 1 , 1 , 1 , 1 , 1
      Security and Communication Networks
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Convolutional neural network (CNN) has been applied widely in various fields. However, it is always hindered by the unexplainable characteristics. Users cannot know why a CNN-based model produces certain recognition results, which is a vulnerability of CNN from the security perspective. To alleviate this problem, in this study, the three existing feature visualization methods of CNN are analyzed in detail firstly, and a unified visualization framework for interpreting the recognition results of CNN is presented. Here, class activation weight (CAW) is considered as the most important factor in the framework. Then, the different types of CAWs are further analyzed, and it is concluded that a linear correlation exists between them. Finally, on this basis, a spatial-channel attention-based class activation mapping (SCA-CAM) method is proposed. This method uses different types of CAWs as attention weights and combines spatial and channel attentions to generate class activation maps, which is capable of using richer features for interpreting the results of CNN. Experiments on four different networks are conducted. The results verify the linear correlation between different CAWs. In addition, compared with the existing methods, the proposed method SCA-CAM can effectively improve the visualization effect of the class activation map with higher flexibility on network structure.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Deep Residual Learning for Image Recognition

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Squeeze-and-Excitation Networks

              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              CBAM: Convolutional Block Attention Module

                Bookmark

                Author and article information

                Contributors
                Journal
                Security and Communication Networks
                Security and Communication Networks
                Hindawi Limited
                1939-0122
                1939-0114
                May 31 2021
                May 31 2021
                : 2021
                : 1-13
                Affiliations
                [1 ]Information Engineering University, Zhengzhou 450001, China
                Article
                10.1155/2021/6682293
                bf000227-6f39-47de-a591-d16b8d373e17
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content126

                Cited by2

                Most referenced authors327