11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Development of an improved breast cancer therapy has been an elusive goal of cancer gene therapy for a long period of time. Human mesenchymal stem cells derived from umbilical cord (hUMSCs) genetically modified with the interleukin (IL)-18 gene (hUMSCs/IL-18) were previously demonstrated to be able to suppress the proliferation, migration and invasion of breast cancer cells in vitro. In the present study, the effect of hUMSCs/IL-18 on breast cancer in a mouse model was investigated. A total of 128 mice were divided into 2 studies (the early-effect study and the late-effect study), with 4 groups in each, including the PBS-, hUMSC-, hUMSC/vector- and hUMSC/IL-18-treated groups. All treatments were injected along with 200 µl PBS. Following therapy, the tumor size, histological examination, and expression of lymphocytes, Ki-67, cluster of differentiation 31 and cytokines [interleukin (IL)-18, IL-12, interferon (IFN)-γ and TNF-α] in each group were analyzed. Proliferation of cells (assessed by measuring tumor size and Ki-67 expression) and metastasis, (by determining pulmonary and hepatic metastasis) of breast cancer cells in the hUMSC/IL-18 group were significantly decreased compared with all other groups. hUMSCs/IL-18 suppressed tumor cell proliferation by activating immunocytes and immune cytokines, decreasing the proliferation index of proliferation marker protein Ki-67 of tumor cells and inhibiting tumor angiogenesis. Furthermore, hUMSCs/IL-18 were able to induce a more marked and improved therapeutic effect in the tumor sites, particularly in early tumors. The results of the present study indicate that hUMSCs/IL-18 were able to inhibit the proliferation and metastasis of breast cancer cells in vivo, possibly leading to an approach for a novel antitumor therapy in breast cancer.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Melanoma biology and new targeted therapy.

          Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of melanoma is rising steadily in western populations--the number of cases worldwide has doubled in the past 20 years. In its early stages malignant melanoma can be cured by surgical resection, but once it has progressed to the metastatic stage it is extremely difficult to treat and does not respond to current therapies. Recent discoveries in cell signalling have provided greater understanding of the biology that underlies melanoma, and these advances are being exploited to provide targeted drugs and new therapeutic approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells.

            Major barriers to effective adenovirus-based gene therapy include induction of an immune response and tumor-specific targeting of vectors. The use of mesenchymal stem cells (MSC) as systemic delivery vehicles for therapeutic genes has been proposed as a result of their combined ability to home in on the tumor site and evade the host immune response. This study is aimed at investigating factors mediating homing of human MSCs to breast cancer primary cultures and cell lines in vitro and in vivo. Fluorescently labeled MSCs were given to mice bearing breast cancer xenografts, and tumor tissue was harvested to detect MSC engraftment. MSC migration in response to primary breast tumors in vitro was quantified, and chemokines secreted by tumor cells were identified. The role of monocyte chemotactic protein-1 (MCP-1) in cell migration was investigated using antibodies and standards of the chemokine. Serum MCP-1 was measured in 125 breast cancer patients and 86 healthy controls. Engrafted MSCs were detected in metastatic breast tumors in mice after systemic administration. There was a significant increase in MSC migration in response to primary breast tumor cells in vitro (6-fold to 11-fold increase). Tumor explants secreted a variety of chemokines including GROalpha, MCP-1, and stromal cell-derived factor-1alpha. An MCP-1 antibody caused a significant decrease (37-42%) in MSC migration to tumors. Serum MCP-1 levels were significantly higher in postmenopausal breast cancer patients than age-matched controls (P < 0.05). These results highlight a role for tumor-secreted MCP-1 in stimulating MSC migration and support the potential of these cells as tumor-targeted delivery vehicles for therapeutic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-18–induced CD83+CCR7+ NK helper cells

              In addition to their cytotoxic activities, natural killer (NK) cells can have immunoregulatory functions. We describe a distinct “helper” differentiation pathway of human CD56 + CD3 − NK cells into CD56 + /CD83 + /CCR7 + /CD25 + cells that display high migratory responsiveness to lymph node (LN)–associated chemokines, high ability to produce interferon-γ upon exposure to dendritic cell (DC)- or T helper (Th) cell–related signals, and pronounced abilities to promote interleukin (IL)-12p70 production in DCs and the development of Th1 responses. This helper pathway of NK cell differentiation, which is not associated with any enhancement of cytolytic activity, is induced by IL-18, but not other NK cell–activating factors. It is blocked by prostaglandin (PG)E2, a factor that induces a similar CD83 + /CCR7 + /CD25 + LN-homing phenotype in maturing DCs. The current data demonstrate independent regulation of the “helper” versus “effector” pathways of NK cell differentiation and novel mechanisms of immunoregulation by IL-18 and PGE2.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                May 2018
                02 March 2018
                02 March 2018
                : 15
                : 5
                : 6265-6274
                Affiliations
                [1 ]Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
                [2 ]Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
                Author notes
                Correspondence to: Professor Funian Li, Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, Shandong 266003, P.R. China, E-mail: qdyxyhjx@ 123456163.com
                [*]

                Contributed equally

                Article
                OL-0-0-8166
                10.3892/ol.2018.8166
                5920279
                29725393
                bef72825-138c-4f8c-998a-1ae02732ec68
                Copyright: © Liu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 02 July 2015
                : 31 January 2017
                Categories
                Articles

                Oncology & Radiotherapy
                breast cancer,cancer gene therapy,mesenchymal stem cell,interleukin-18,in vivo study

                Comments

                Comment on this article