Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The potential impact of the COVID-19 pandemic on antimicrobial resistance and antibiotic stewardship

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid emergence and spread of antimicrobial resistance continue to kill an estimated 700,000 people annually, and this number is projected to increase ten-fold by 2050. With the lack of data, it is uncertain how the COVID-19 pandemic will affect antimicrobial resistance. Severe disruption of research, innovation, global health programs, and compromised antimicrobial stewardship, infection prevention and control programs, especially in low-and middle-income countries, could affect antimicrobial resistance. However, factors such as strict lockdown, social distancing, vaccination, and the extensive implementation of hand hygiene and face masks, with limited international travel and migration, may also contribute to decreasing AMR. Although the impact of COVID-19 on AMR is global, the adverse effect is likely to be worse in LMICs. In this article, we explore the possible impact of the current pandemic on antibiotic resistance.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

            Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing

              Abstract Background To explore and describe the current literature surrounding bacterial/fungal co-infection in patients with coronavirus infection. Methods MEDLINE, EMBASE, and Web of Science were searched using broad based search criteria relating to coronavirus and bacterial co-infection. Articles presenting clinical data for patients with coronavirus infection (defined as SARS-1, MERS, SARS-COV-2, and other coronavirus) and bacterial/fungal co-infection reported in English, Mandarin, or Italian were included. Data describing bacterial/fungal co-infections, treatments, and outcomes were extracted. Secondary analysis of studies reporting antimicrobial prescribing in SARS-COV-2 even in the absence of co-infection was performed. Results 1007 abstracts were identified. Eighteen full texts reported bacterial/fungal co-infection were included. Most studies did not identify or report bacterial/fungal coinfection (85/140;61%). 9/18 (50%) studies reported on COVID-19, 5/18 (28%) SARS-1, 1/18 (6%) MERS, and 3/18 (17%) other coronavirus. For COVID-19, 62/806 (8%) patients were reported as experiencing bacterial/fungal co-infection during hospital admission. Secondary analysis demonstrated wide use of broad-spectrum antibacterials, despite a paucity of evidence for bacterial coinfection. On secondary analysis, 1450/2010 (72%) of patients reported received antimicrobial therapy. No antimicrobial stewardship interventions were described. For non-COVID-19 cases bacterial/fungal co-infection was reported in 89/815 (11%) of patients. Broad-spectrum antibiotic use was reported. Conclusions Despite frequent prescription of broad-spectrum empirical antimicrobials in patients with coronavirus associated respiratory infections, there is a paucity of data to support the association with respiratory bacterial/fungal co-infection. Generation of prospective evidence to support development of antimicrobial policy and appropriate stewardship interventions specific for the COVID-19 pandemic are urgently required.
                Bookmark

                Author and article information

                Contributors
                supram.gowda@gmail.com
                dczyz@ufl.edu
                kriaasedu@gmail.com
                hhumphreys@rcsi.ie
                Journal
                Virusdisease
                Virusdisease
                VirusDisease
                Springer India (New Delhi )
                2347-3584
                2347-3517
                25 May 2021
                : 1-8
                Affiliations
                [1 ]GRID grid.416380.8, ISNI 0000 0004 0635 3587, Department of Medical Microbiology, , Manipal College of Medical Sciences, ; Pokhara, Nepal
                [2 ]GRID grid.15276.37, ISNI 0000 0004 1936 8091, Department of Microbiology and Cell Science, , University of Florida, ; Gainesville, FL USA
                [3 ]GRID grid.507916.c, Animal Quarantine Office, ; Budhanilkantha, Kathmandu, Nepal
                [4 ]GRID grid.4912.e, ISNI 0000 0004 0488 7120, Department of Clinical Microbiology, , RCSI, ; Dublin, Ireland
                [5 ]GRID grid.414315.6, ISNI 0000 0004 0617 6058, Department of Microbiology, , Beaumont Hospital, ; Dublin, Ireland
                Author information
                http://orcid.org/0000-0002-3488-4217
                http://orcid.org/0000-0002-7491-5292
                Article
                695
                10.1007/s13337-021-00695-2
                8145182
                34056051
                bee798c8-ec35-49c5-a954-6728ea4c00e7
                © Indian Virological Society 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 2 January 2021
                : 4 May 2021
                Categories
                Short Communication

                lmic,covid-19,coronavirus,antibiotics,antimicrobial resistance

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content454

                Cited by27

                Most referenced authors2,008