0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioengineering extracellular vesicle cargo for optimal therapeutic efficiency

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular vesicles (EVs) have the innate ability to carry proteins, lipids, and nucleic acids between cells, and thus these vesicles have gained much attention as potential therapeutic delivery vehicles. Many strategies have been explored to enhance the loading of specific cargoes of interest into EVs, which could result in the delivery of more therapeutic to recipient cells, thus enhancing therapeutic efficacy. In this review, we discuss the natural biogenesis of EVs, the mechanism by which proteins and nucleic acids are selected for inclusion in EVs, and novel methods that have been employed to enhance loading of specific cargoes into EVs. As well, we discuss biodistribution of administered EVs in vivo and summarize clinical trials that have attempted to harness the therapeutic potential of EVs.

          Graphical abstract

          Abstract

          Parks and René have reviewed extracellular vesicle (EV) biogenesis and cargo loading, methods for enhancing loading of specific cargo into EVs, biodistribution of administered EVs, and clinical trials that have harnessed the therapeutic potential of EVs.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.

          The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

            Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Extracellular vesicles: Exosomes, microvesicles, and friends

              Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                American Society of Gene & Cell Therapy
                2329-0501
                26 April 2024
                13 June 2024
                26 April 2024
                : 32
                : 2
                : 101259
                Affiliations
                [1 ]Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
                [2 ]Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
                [3 ]Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
                [4 ]Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
                Author notes
                []Corresponding author: Robin J. Parks, Ottawa Hospital Research Institute, Room C4415 - Regenerative Medicine Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada. rparks@ 123456ohri.ca
                Article
                S2329-0501(24)00075-5 101259
                10.1016/j.omtm.2024.101259
                11103572
                38770107
                bee1898f-cb43-42c6-97c0-d45cedfe8b3b
                © 2024 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Review

                exosomes,extracellular vesicles,biodistribution,bioengineering,therapeutic delivery

                Comments

                Comment on this article