19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens.

      ,
      Journal of bacteriology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among 21 different polysaccharides tested, 5 greatly enhanced the spontaneous and cyclic AMP-induced formation of exolipase: glycogen, hyaluronate, laminarin, pectin B, and gum arabic. These polysaccharides have in common the tendency to form highly ordered networks because of the branching or helical arrangement, or both, of their molecules. None of the polysaccharides could be utilized by the cells as the sole carbon source. Strong lipid extraction of four different polysaccharides did not reduce their exolipase-enhancing efficacy. At a constant cell density the stimulation of exolipase formation by various concentrations of glycogen followed saturation kinetics, suggesting a limited number of "sites" for the glycogen to act. The active principle present in a solution of pectin was destroyed by degradation (beta-elimination) of the polymer. Hyaluronate lost its exolipase-enhancing activity by exhaustive hydrolysis with hyaluronidase but was resistant to proteinase K. Exopolysaccharide, isolated from growth medium of Serratia marcescens SM-6, enhanced the exolipase formation as efficiently as hyaluronate. The results of this work are discussed mainly in terms of the "detachment hypothesis."

          Related collections

          Author and article information

          Journal
          J Bacteriol
          Journal of bacteriology
          American Society for Microbiology
          0021-9193
          0021-9193
          Jun 1979
          : 138
          : 3
          Article
          10.1128/jb.138.3.663-670.1979
          218088
          222724
          bece2825-d460-4cc8-9a72-be00b27e02ad
          History

          Comments

          Comment on this article