0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prenatal and Postnatal Maternal Depressive Symptoms Are Associated With White Matter Integrity in 5-Year-Olds in a Sex-Specific Manner

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale.

          The development of a 10-item self-report scale (EPDS) to screen for Postnatal Depression in the community is described. After extensive pilot interviews a validation study was carried out on 84 mothers using the Research Diagnostic Criteria for depressive illness obtained from Goldberg's Standardised Psychiatric Interview. The EPDS was found to have satisfactory sensitivity and specificity, and was also sensitive to change in the severity of depression over time. The scale can be completed in about 5 minutes and has a simple method of scoring. The use of the EPDS in the secondary prevention of Postnatal Depression is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast robust automated brain extraction.

            An automated method for segmenting magnetic resonance head images into brain and non-brain has been developed. It is very robust and accurate and has been tested on thousands of data sets from a wide variety of scanners and taken with a wide variety of MR sequences. The method, Brain Extraction Tool (BET), uses a deformable model that evolves to fit the brain's surface by the application of a set of locally adaptive model forces. The method is very fast and requires no preregistration or other pre-processing before being applied. We describe the new method and give examples of results and the results of extensive quantitative testing against "gold-standard" hand segmentations, and two other popular automated methods. Copyright 2002 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.

              There has been much recent interest in using magnetic resonance diffusion imaging to provide information about anatomical connectivity in the brain, by measuring the anisotropic diffusion of water in white matter tracts. One of the measures most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies how strongly directional the local tract structure is. Many imaging studies are starting to use FA images in voxelwise statistical analyses, in order to localise brain changes related to development, degeneration and disease. However, optimal analysis is compromised by the use of standard registration algorithms; there has not to date been a satisfactory solution to the question of how to align FA images from multiple subjects in a way that allows for valid conclusions to be drawn from the subsequent voxelwise analysis. Furthermore, the arbitrariness of the choice of spatial smoothing extent has not yet been resolved. In this paper, we present a new method that aims to solve these issues via (a) carefully tuned non-linear registration, followed by (b) projection onto an alignment-invariant tract representation (the "mean FA skeleton"). We refer to this new approach as Tract-Based Spatial Statistics (TBSS). TBSS aims to improve the sensitivity, objectivity and interpretability of analysis of multi-subject diffusion imaging studies. We describe TBSS in detail and present example TBSS results from several diffusion imaging studies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Biological Psychiatry
                Biological Psychiatry
                Elsevier BV
                00063223
                December 2023
                December 2023
                : 94
                : 12
                : 924-935
                Article
                10.1016/j.biopsych.2023.05.014
                37220833
                bec6889b-31fb-4a1c-a32e-a2b94d42ee3a
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article