1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variants in CDH23 cause a broad spectrum of hearing loss: from non-syndromic to syndromic hearing loss as well as from congenital to age-related hearing loss

      research-article
      , , ,
      Human Genetics
      Springer Berlin Heidelberg

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Variants in the CDH23 gene are known to be responsible for both syndromic hearing loss (Usher syndrome type ID: USH1D) and non-syndromic hearing loss (DFNB12). Our series of studies demonstrated that CDH23 variants cause a broad range of phenotypes of non-syndromic hearing loss (DFNB12); from congenital profound hearing loss to late-onset high-frequency-involved progressive hearing loss. In this study, based on the genetic and clinical data from more than 10,000 patients, the mutational spectrum, clinical characteristics and genotype/phenotype correlations were evaluated. The present results reconfirmed that the variants in CDH23 are an important cause of non-syndromic sensorineural hearing loss. In addition, we showed that the mutational spectrum in the Japanese population, which is probably representative of the East Asian population in general, as well as frequent CDH23 variants that might be due to some founder effects. The present study demonstrated CDH23 variants cause a broad range of phenotypes, from non-syndromic to syndromic hearing loss as well as from congenital to age-related hearing loss. Genotype (variant combinations) and phenotype (association with retinal pigmentosa, onset age) are shown to be well correlated and are thought to be related to the residual function defined by the CDH23 variants.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s00439-022-02431-2.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data

            High-throughput sequencing platforms are generating massive amounts of genetic variation data for diverse genomes, but it remains a challenge to pinpoint a small subset of functionally important variants. To fill these unmet needs, we developed the ANNOVAR tool to annotate single nucleotide variants (SNVs) and insertions/deletions, such as examining their functional consequence on genes, inferring cytogenetic bands, reporting functional importance scores, finding variants in conserved regions, or identifying variants reported in the 1000 Genomes Project and dbSNP. ANNOVAR can utilize annotation databases from the UCSC Genome Browser or any annotation data set conforming to Generic Feature Format version 3 (GFF3). We also illustrate a ‘variants reduction’ protocol on 4.7 million SNVs and indels from a human genome, including two causal mutations for Miller syndrome, a rare recessive disease. Through a stepwise procedure, we excluded variants that are unlikely to be causal, and identified 20 candidate genes including the causal gene. Using a desktop computer, ANNOVAR requires ∼4 min to perform gene-based annotation and ∼15 min to perform variants reduction on 4.7 million variants, making it practical to handle hundreds of human genomes in a day. ANNOVAR is freely available at http://www.openbioinformatics.org/annovar/ .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human Gene Mutation Database (HGMD): 2003 update.

              The Human Gene Mutation Database (HGMD) constitutes a comprehensive core collection of data on germ-line mutations in nuclear genes underlying or associated with human inherited disease (www.hgmd.org). Data catalogued includes: single base-pair substitutions in coding, regulatory and splicing-relevant regions; micro-deletions and micro-insertions; indels; triplet repeat expansions as well as gross deletions; insertions; duplications; and complex rearrangements. Each mutation is entered into HGMD only once in order to avoid confusion between recurrent and identical-by-descent lesions. By March 2003, the database contained in excess of 39,415 different lesions detected in 1,516 different nuclear genes, with new entries currently accumulating at a rate exceeding 5,000 per annum. Since its inception, HGMD has been expanded to include cDNA reference sequences for more than 87% of listed genes, splice junction sequences, disease-associated and functional polymorphisms, as well as links to data present in publicly available online locus-specific mutation databases. Although HGMD has recently entered into a licensing agreement with Celera Genomics (Rockville, MD), mutation data will continue to be made freely available via the Internet. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                usami@shinshu-u.ac.jp
                Journal
                Hum Genet
                Hum Genet
                Human Genetics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0340-6717
                1432-1203
                12 January 2022
                12 January 2022
                2022
                : 141
                : 3-4
                : 903-914
                Affiliations
                GRID grid.263518.b, ISNI 0000 0001 1507 4692, Department of Hearing Implant Sciences, , Shinshu University School of Medicine, ; 3-1-1 Asahi, Matsumoto, 390-8621 Japan
                Author information
                http://orcid.org/0000-0002-5068-6122
                Article
                2431
                10.1007/s00439-022-02431-2
                9034991
                35020051
                beaac406-77f9-4345-9168-eb8252a790e6
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 June 2021
                : 6 January 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003478, ministry of health, labour and welfare;
                Award ID: H29-Nanchitou(Nan)-Ippan-031
                Award ID: 20FC1048
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100009619, japan agency for medical research and development;
                Award ID: 16kk0205010h0001
                Award ID: 17kk0205010h0002
                Award ID: 18kk0205010h0003
                Award ID: 17ek0109114h0003
                Award ID: 18ek0109363h0001
                Award ID: 19ek0109363h0002
                Award ID: 20ek0109363h0003
                Award Recipient :
                Funded by: japan society for the promotion of science
                Award ID: 15H02565
                Award Recipient :
                Categories
                Original Investigation
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2022

                Genetics
                Genetics

                Comments

                Comment on this article