62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glucocorticoid-induced tumor necrosis factor receptor–related protein co-stimulation facilitates tumor regression by inducing IL-9–producing helper T cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T cell stimulation via glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR) elicits antitumor activity in various tumor models; however, the underlying mechanism of action remains unclear. Here we demonstrate a crucial role for interleukin (IL)-9 in antitumor immunity generated by the GITR agonistic antibody DTA-1. IL-4 receptor knockout (Il4ra(-/-)) mice, which have reduced expression of IL-9, were resistant to tumor growth inhibition by DTA-1. Notably, neutralization of IL-9 considerably impaired tumor rejection induced by DTA-1. In particular, DTA-1-induced IL-9 promoted tumor-specific cytotoxic T lymphocyte (CTL) responses by enhancing the function of dendritic cells in vivo. Furthermore, GITR signaling enhanced the differentiation of IL-9-producing CD4(+) T-helper (TH9) cells in a TNFR-associated factor 6 (TRAF6)- and NF-κB-dependent manner and inhibited the generation of induced regulatory T cells in vitro. Our findings demonstrate that GITR co-stimulation mediates antitumor immunity by promoting TH9 cell differentiation and enhancing CTL responses and thus provide a mechanism of action for GITR agonist-mediated cancer immunotherapies.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cells, tumour immunity and immunotherapy.

          Tumours express a range of antigens, including self-antigens. Regulatory T cells are crucial for maintaining T-cell tolerance to self-antigens. Regulatory T cells are thought to dampen T-cell immunity to tumour-associated antigens and to be the main obstacle tempering successful immunotherapy and active vaccination. In this Review, I consider the nature and characteristics of regulatory T cells in the tumour microenvironment and their potential multiple suppressive mechanisms. Strategies for therapeutic targeting of regulatory T cells and the effect of regulatory T cells on current immunotherapeutic and vaccine regimens are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset.

            Since the discovery of T helper type 1 and type 2 effector T cell subsets 20 years ago, inducible regulatory T cells and interleukin 17 (IL-17)-producing T helper cells have been added to the 'portfolio' of helper T cells. It is unclear how many more effector T cell subsets there may be and to what degree their characteristics are fixed or flexible. Here we show that transforming growth factor-beta, a cytokine at the center of the differentiation of IL-17-producing T helper cells and inducible regulatory T cells, 'reprograms' T helper type 2 cells to lose their characteristic profile and switch to IL-9 secretion or, in combination with IL-4, drives the differentiation of 'T(H)-9' cells directly. Thus, transforming growth factor-beta constitutes a regulatory 'switch' that in combination with other cytokines can 'reprogram' effector T cell differentiation along different pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance.

              CD25(+)CD4(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance. We show here that glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR, also known as TNFRSF18)--a member of the tumor necrosis factor-nerve growth factor (TNF-NGF) receptor gene superfamily--is predominantly expressed on CD25(+)CD4(+) T cells and on CD25(+)CD4(+)CD8(-) thymocytes in normal naïve mice. We found that stimulation of GITR abrogated CD25(+)CD4(+) T cell-mediated suppression. In addition, removal of GITR-expressing T cells or administration of a monoclonal antibody to GITR produced organ-specific autoimmune disease in otherwise normal mice. Thus, GITR plays a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells and could be a suitable molecular target for preventing or treating autoimmune disease.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                September 2015
                August 17 2015
                September 2015
                : 21
                : 9
                : 1010-1017
                Article
                10.1038/nm.3922
                26280119
                be7c4c7b-a2f1-4c95-aee7-56421333062b
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content613

                Cited by67

                Most referenced authors894