19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Forecast Constraints on Inflation from Combined CMB and Gravitational Wave Direct Detection Experiments

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study how direct detection of the inflationary gravitational wave background constrains inflationary parameters and complements CMB polarization measurements. The error ellipsoids calculated using the Fisher information matrix approach with Planck and the direct detection experiment, BBO (Big Bang Observer), show different directions of parameter degeneracy, and the degeneracy is broken when they are combined. For a slow-roll parameterization, we show that BBO could significantly improve the constraints on the tensor-to-scalar ratio compared with Planck alone. We also look at a quadratic and a natural inflation model. In both cases, if the temperature of reheating is also treated as a free parameter, then the addition of BBO can significantly improve the error bars. In the case of natural inflation, we find that the addition of BBO could even partially improve the error bars of a cosmic variance-limited CMB experiment.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Towards the Theory of Reheating After Inflation

          Reheating after inflation occurs due to particle production by the oscillating inflaton field. In this paper we describe the perturbative approach to reheating, and then concentrate on effects beyond the perturbation theory. They are related to the stage of parametric resonance called preheating. It may occur in an expanding universe if the initial amplitude of oscillations of the inflaton field is large enough. We investigate a simple model of a massive inflaton field coupled to another scalar field X. Parametric resonance in this model is very broad. It occurs in a very unusual stochastic manner, which is different from the parametric resonance in the case when the expansion of the universe is neglected. Quantum fields interacting with the oscillating inflaton field experience a series of kicks which occur with phases uncorrelated to each other. We call this process stochastic resonance. We develop the theory of preheating taking into account the expansion of the universe and backreaction of produced particles, including the effects of rescattering. The process of preheating can be divided into several distinct stages. At the first stage the backreaction of created particles is not important. At the second stage backreaction increases the frequency of oscillations of the inflaton field, which makes the process even more efficient than before. Then the effects related to scattering of X-particles terminate the resonance. We calculate the density of X-particles and their quantum fluctuations with all backreaction effects taken into account. This allows us to find the range of masses and coupling constants for which one has efficient preheating. In particular, under certain conditions this process may produce particles with a mass much greater than the mass of the inflaton field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Reconstructing the Inflaton Potential --- an Overview

            We review the relation between the inflationary potential and the spectra of density (scalar) perturbations and gravitational waves (tensor perturbations) produced, with particular emphasis on the possibility of reconstructing the inflaton potential from observations. The spectra provide a potentially powerful test of the inflationary hypothesis; they are not independent but instead are linked by consistency relations reflecting their origin from a single inflationary potential. To lowest-order in a perturbation expansion there is a single, now familiar, relation between the tensor spectral index and the relative amplitude of the spectra. We demonstrate that there is an infinite hierarchy of such consistency equations, though observational difficulties suggest only the first is ever likely to be useful. We also note that since observations are expected to yield much better information on the scalars than on the tensors, it is likely to be the next-order version of this consistency equation which will be appropriate, not the lowest-order one. If inflation passes the consistency test, one can then confidently use the remaining observational information to constrain the inflationary potential, and we survey the general perturbative scheme for carrying out this procedure. Explicit expressions valid to next-lowest order in the expansion are presented. We then briefly assess the prospects for future observations reaching the quality required, and consider a simulated data set that is motivated by this outlook.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Measuring the stochastic gravitational-radiation background with laser-interferometric antennas

                Bookmark

                Author and article information

                Journal
                18 December 2009
                2010-08-02
                Article
                10.1103/PhysRevD.81.083524
                0912.3683
                be65487d-abf5-4aeb-b46c-45931b819c02

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys.Rev.D81:083524,2010
                12 pages, 5 figures; matches version to appear in PRD; typos corrected
                astro-ph.CO gr-qc hep-ph hep-th

                Comments

                Comment on this article