88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Specificity Map for the PDZ Domain Family

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PDZ domains are protein–protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position −2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.

          Author Summary

          The PDZ domain is a structural domain that functions as a protein–protein interaction module that recognizes specific C-terminal peptide sequences to assemble intracellular complexes important in signaling pathways of multicellular organisms. These modules are associated with human disease and are targets of viruses and other pathogens. By examining peptide specificity and substrate diversity of roughly one half of the PDZ domains known to exist in human and the nematode Caenorhabditis elegans, we were able to show that PDZ domains are more specific than previously appreciated. PDZ domains also remain functional under high mutational pressure, and only a few of the vast number of possible PDZ domain specificities are utilized in nature. These PDZ domain specificities are conserved from human to worm, implying that the specificities evolved early and were reused over evolution instead of being reshaped. The specificity map generated here was used to predict and experimentally confirm new viral PDZ-binding motifs. We present evidence that pathogenic viruses, including avian influenza, bind host PDZ domains via these motifs, thereby competing with signaling by host complexes, which leads to disruption of growth and polarity of the host cells.

          Abstract

          A genome-scale specificity map for PDZ domains reveals how family members recognize ligands to assemble signaling complexes and also reveals how viruses target these domains to subvert host cell function.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Pfam: clans, web tools and services

          Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ensembl 2007

            The Ensembl () project provides a comprehensive and integrated source of annotation of chordate genome sequences. Over the past year the number of genomes available from Ensembl has increased from 15 to 33, with the addition of sites for the mammalian genomes of elephant, rabbit, armadillo, tenrec, platypus, pig, cat, bush baby, common shrew, microbat and european hedgehog; the fish genomes of stickleback and medaka and the second example of the genomes of the sea squirt (Ciona savignyi) and the mosquito (Aedes aegypti). Some of the major features added during the year include the first complete gene sets for genomes with low-sequence coverage, the introduction of new strain variation data and the introduction of new orthology/paralog annotations based on gene trees.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular biology of human papillomavirus infection and cervical cancer.

              HPVs (human papillomaviruses) infect epithelial cells and cause a variety of lesions ranging from common warts/verrucas to cervical neoplasia and cancer. Over 100 different HPV types have been identified so far, with a subset of these being classified as high risk. High-risk HPV DNA is found in almost all cervical cancers (>99.7%), with HPV16 being the most prevalent type in both low-grade disease and cervical neoplasia. Productive infection by high-risk HPV types is manifest as cervical flat warts or condyloma that shed infectious virions from their surface. Viral genomes are maintained as episomes in the basal layer, with viral gene expression being tightly controlled as the infected cells move towards the epithelial surface. The pattern of viral gene expression in low-grade cervical lesions resembles that seen in productive warts caused by other HPV types. High-grade neoplasia represents an abortive infection in which viral gene expression becomes deregulated, and the normal life cycle of the virus cannot be completed. Most cervical cancers arise within the cervical transformation zone at the squamous/columnar junction, and it has been suggested that this is a site where productive infection may be inefficiently supported. The high-risk E6 and E7 proteins drive cell proliferation through their association with PDZ domain proteins and Rb (retinoblastoma), and contribute to neoplastic progression, whereas E6-mediated p53 degradation prevents the normal repair of chance mutations in the cellular genome. Cancers usually arise in individuals who fail to resolve their infection and who retain oncogene expression for years or decades. In most individuals, immune regression eventually leads to clearance of the virus, or to its maintenance in a latent or asymptomatic state in the basal cells.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                September 2008
                30 September 2008
                : 6
                : 9
                : e239
                Affiliations
                [1 ] Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
                [2 ] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
                [3 ] Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
                [4 ] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [5 ] Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
                [6 ] Department of Immunology, Genentech South San Francisco, California, United States of America
                [7 ] Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [8 ] Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
                Howard Hughes Medical Institute, Janelia Farm, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: sachdev.sidhu@ 123456utoronto.ca (SSS); gary.bader@ 123456utoronto.ca (GDB); charlie.boone@ 123456utoronto.ca (CB)
                Article
                07-PLBI-RA-4212R4 plbi-06-09-23
                10.1371/journal.pbio.0060239
                2553845
                18828675
                be501fc1-f096-4559-a681-49106eebb935
                Copyright: © 2008 Tonikian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 December 2007
                : 19 August 2008
                Page count
                Pages: 17
                Categories
                Research Article
                Biochemistry
                Computational Biology
                Virology
                Custom metadata
                Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh J-H, et al. (2008) A specificity map for the PDZ domain family. PLoS Biol 6(9): e239. doi: 10.1371/journal.pbio.0060239

                Life sciences
                Life sciences

                Comments

                Comment on this article