45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Microbial consortia represent promising candidates for aiding in the development of plant biomass conversion strategies for biofuel production. However, the interaction between different community members and the dynamics of enzyme complements during the lignocellulose deconstruction process remain poorly understood. We present here a comprehensive study on the community structure and enzyme systems of a lignocellulolytic microbial consortium EMSD5 during growth on corn stover, using metagenome sequencing in combination with quantitative metaproteomics.

          Results

          The taxonomic affiliation of the metagenomic data showed that EMSD5 was primarily composed of members from the phyla Proteobacteria, Firmicutes and Bacteroidetes. The carbohydrate-active enzyme (CAZyme) annotation revealed that representatives of Firmicutes encoded a broad array of enzymes responsible for hemicellulose and cellulose deconstruction. Extracellular metaproteome analysis further pinpointed the specific role and synergistic interaction of Firmicutes populations in plant polysaccharide breakdown. In particular, a wide range of xylan degradation-related enzymes, including xylanases, β-xylosidases, α- l-arabinofuranosidases, α-glucuronidases and acetyl xylan esterases, were secreted by diverse members from Firmicutes during growth on corn stover. Using label-free quantitative proteomics, we identified the differential secretion pattern of a core subset of enzymes, including xylanases and cellulases with multiple carbohydrate-binding modules (CBMs). In addition, analysis of the coordinate expression patterns indicated that transport proteins and hypothetical proteins may play a role in bacteria processing lignocellulose. Moreover, enzyme preparation from EMSD5 demonstrated synergistic activities in the hydrolysis of pretreated corn stover by commercial cellulases from Trichoderma reesei.

          Conclusions

          These results demonstrate that the corn stover-adapted microbial consortium EMSD5 harbors a variety of lignocellulolytic anaerobic bacteria and degradative enzymes, especially those implicated in hemicellulose decomposition. The data in this study highlight the pivotal role and cooperative relationship of Firmicutes members in the biodegradation of plant lignocellulose by EMSD5. The differential expression patterns of enzymes reveal the strategy of sequential lignocellulose deconstruction by EMSD5. Our findings provide insights into the mechanism by which consortium members orchestrate their array of enzymes to degrade complex lignocellulosic biomass.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13068-016-0658-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Global potential bioethanol production from wasted crops and crop residues

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges

            Orthologous relationships form the basis of most comparative genomic and metagenomic studies and are essential for proper phylogenetic and functional analyses. The third version of the eggNOG database (http://eggnog.embl.de) contains non-supervised orthologous groups constructed from 1133 organisms, doubling the number of genes with orthology assignment compared to eggNOG v2. The new release is the result of a number of improvements and expansions: (i) the underlying homology searches are now based on the SIMAP database; (ii) the orthologous groups have been extended to 41 levels of selected taxonomic ranges enabling much more fine-grained orthology assignments; and (iii) the newly designed web page is considerably faster with more functionality. In total, eggNOG v3 contains 721 801 orthologous groups, encompassing a total of 4 396 591 genes. Additionally, we updated 4873 and 4850 original COGs and KOGs, respectively, to include all 1133 organisms. At the universal level, covering all three domains of life, 101 208 orthologous groups are available, while the others are applicable at 40 more limited taxonomic ranges. Each group is amended by multiple sequence alignments and maximum-likelihood trees and broad functional descriptions are provided for 450 904 orthologous groups (62.5%).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum.

              The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria.
                Bookmark

                Author and article information

                Contributors
                joylign@yeah.net
                yangjsh1999@163.com
                jilei.1010@163.com
                1070184179@qq.com
                yang11yi@aliyun.com
                hlyuan@cau.edu.cn
                Journal
                Biotechnol Biofuels
                Biotechnol Biofuels
                Biotechnology for Biofuels
                BioMed Central (London )
                1754-6834
                9 November 2016
                9 November 2016
                2016
                : 9
                : 243
                Affiliations
                [1 ]State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
                [2 ]National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, 100193 China
                Article
                658
                10.1186/s13068-016-0658-z
                5103373
                26734071
                be3f549d-aa4b-4fa3-ba26-dfe0cd884072
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 August 2016
                : 28 October 2016
                Funding
                Funded by: the National High Technology Research and Development Program of China
                Award ID: 2011AA10A206
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Biotechnology
                plant biomass,microbial consortium,corn stover,metagenomics,metaproteomics,firmicutes,synergism,hemicellulase

                Comments

                Comment on this article