5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of homemade face masks against human coughs: Insights on penetration, atomization, and aerosolization of cough droplets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ever since the emergence of the ongoing COVID-19 pandemic, the usage of makeshift facemasks is generally advised by policymakers as a possible substitute for commercially available surgical or N95 face masks. Although such endorsements could be economical and easily accessible in various low per-capita countries, the experimental evidence on the effectiveness of such recommendations is still lacking. In this regard, we carried out a detailed experimental investigation to study the fate of a large-sized surrogate cough droplet impingement at different velocities (corresponding to mild to severe coughs) on various locally procured cloth fabrics. Observation shows that larger ejected droplets (droplets that would normally settle as fomites in general) during a coughing event have enough momentum to penetrate single-layer cloth masks; the penetrated volume atomize into smaller daughter droplets that fall within aerosol range, thereby increasing infection potential. Theoretically, two essential criteria based on the balances of viscous dissipation-kinetic energy and surface tension-kinetic energy effects have been suggested for the droplet penetration through mask layers. Furthermore, a new parameter called η (the number density of pores for a fabric) is developed to characterize the volume penetration potential and subsequent daughter droplet size. Finally, the effect of mask washing frequency is analyzed. The outcomes from the current study can be used as a guide in selecting cloth fabrics for stitching multi-layered.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found

          Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

          Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. Methods We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. Findings Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] −10·2%, 95% CI −11·5 to −7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; p interaction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD −14·3%, −15·9 to −10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12–16-layer cotton masks; p interaction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD −10·6%, 95% CI −12·5 to −7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. Interpretation The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. Funding World Health Organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Respiratory virus shedding in exhaled breath and efficacy of face masks

            We identified seasonal human coronaviruses, influenza viruses and rhinoviruses in exhaled breath and coughs of children and adults with acute respiratory illness. Surgical face masks significantly reduced detection of influenza virus RNA in respiratory droplets and coronavirus RNA in aerosols, with a trend toward reduced detection of coronavirus RNA in respiratory droplets. Our results indicate that surgical face masks could prevent transmission of human coronaviruses and influenza viruses from symptomatic individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks

              The emergence of a pandemic affecting the respiratory system can result in a significant demand for face masks. This includes the use of cloth masks by large sections of the public, as can be seen during the current global spread of COVID-19. However, there is limited knowledge available on the performance of various commonly available fabrics used in cloth masks. Importantly, there is a need to evaluate filtration efficiencies as a function of aerosol particulate sizes in the 10 nm to 10 μm range, which is particularly relevant for respiratory virus transmission. We have carried out these studies for several common fabrics including cotton, silk, chiffon, flannel, various synthetics, and their combinations. Although the filtration efficiencies for various fabrics when a single layer was used ranged from 5 to 80% and 5 to 95% for particle sizes of 300 nm, respectively, the efficiencies improved when multiple layers were used and when using a specific combination of different fabrics. Filtration efficiencies of the hybrids (such as cotton–silk, cotton–chiffon, cotton–flannel) was >80% (for particles 90% (for particles >300 nm). We speculate that the enhanced performance of the hybrids is likely due to the combined effect of mechanical and electrostatic-based filtration. Cotton, the most widely used material for cloth masks performs better at higher weave densities (i.e., thread count) and can make a significant difference in filtration efficiencies. Our studies also imply that gaps (as caused by an improper fit of the mask) can result in over a 60% decrease in the filtration efficiency, implying the need for future cloth mask design studies to take into account issues of “fit” and leakage, while allowing the exhaled air to vent efficiently. Overall, we find that combinations of various commonly available fabrics used in cloth masks can potentially provide significant protection against the transmission of aerosol particles.
                Bookmark

                Author and article information

                Contributors
                Journal
                Phys Fluids (1994)
                Phys Fluids (1994)
                PHFLE6
                Physics of Fluids
                AIP Publishing LLC
                1070-6631
                1089-7666
                September 2021
                14 September 2021
                14 September 2021
                : 33
                : 9
                : 093309
                Affiliations
                [1 ]Department of Mechanical Engineering, Indian Institute of Science , Bangalore, Karnataka 560012, India
                [2 ]Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore, Karnataka 560012, India
                [3 ]Center of Biosystems Science and Engineering, Indian Institute of Science , Bangalore, Karnataka 560012, India
                [4 ]Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science , Bangalore, Karnataka 560012, India
                Author notes
                [a) ] Author to whom correspondence should be addressed: sbasu@ 123456iisc.ac.in
                Author information
                https://orcid.org/0000-0002-9889-8490
                https://orcid.org/0000-0002-5288-1001
                https://orcid.org/0000-0002-8704-887X
                https://orcid.org/0000-0002-7838-5145
                https://orcid.org/0000-0002-9652-9966
                Article
                5.0061007 POF21-AR-FATV2020-02812
                10.1063/5.0061007
                8450911
                be333478-d6de-4568-8ffe-8fe6deb142e2
                © 2021 Author(s).

                Published under an exclusive license by AIP Publishing.

                All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 June 2021
                : 02 August 2021
                Page count
                Pages: 11
                Funding
                Funded by: Science and Engineering Research Board https://doi.org/10.13039/501100001843
                Categories
                ARTICLES
                Particulate, Multiphase, and Granular Flows
                Custom metadata

                Comments

                Comment on this article