0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High risk water pollution hazards affecting Aveiro coastal lagoon (Portugal) – A habitat risk assessment using InVEST

      , , , ,
      Ecological Informatics
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spatial and temporal changes in cumulative human impacts on the world's ocean

          Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis.

            The history of aquatic environmental pollution goes back to the very beginning of the history of human civilization. However, aquatic pollution did not receive much attention until a threshold level was reached with adverse consequences on the ecosystems and organisms. Aquatic pollution has become a global concern, but even so, most developing nations are still producing huge pollution loads and the trends are expected to increase. Knowledge of the pollution sources and impacts on ecosystems is important not only for a better understanding on the ecosystem responses to pollutants but also to formulate prevention measures. Many of the sources of aquatic pollutions are generally well known and huge effort has been devoted to the issue. However, new concepts and ideas on environmental pollution are emerging (e.g., biological pollution) with a corresponding need for an update of the knowledge. The present paper attempts to provide an easy-to-follow depiction on the various forms of aquatic pollutions and their impacts on the ecosystem and organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Does aquaculture add resilience to the global food system?

              Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
                Bookmark

                Author and article information

                Journal
                Ecological Informatics
                Ecological Informatics
                Elsevier BV
                15749541
                September 2023
                September 2023
                : 76
                : 102144
                Article
                10.1016/j.ecoinf.2023.102144
                be2520e8-9f99-446f-b9e3-9b027b6f5bb8
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article