0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cerebral vasculature exhibits dose-dependent sensitivity to thrombocytopenia that is limited to fetal/neonatal life

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whether increasing platelet counts in fetal and neonatal alloimmune thrombocytopenia (FNAIT) is effective at preventing intracerebral hemorrhage (ICH) has been a subject of debate. The crux of the matter has been whether thrombocytopenia is the major driver of ICH in diseases such as FNAIT. We recently demonstrated in mice that severe thrombocytopenia was sufficient to drive ICH in utero and in early neonatal life. It remains unclear what degree of thrombocytopenia is required to drive ICH and for how long after birth thrombocytopenia can cause ICH. By inducing a thrombocytopenic range, we demonstrate that there is a large buffer zone of mild thrombocytopenia that does not result in ICH, that ICH becomes probabilistic at 40% of the normal platelet number, and that ICH becomes fully penetrant below 10% of the normal platelet number. We also demonstrate that although the neonatal mouse is susceptible to thrombocytopenia-induced ICH, this sensitivity is rapidly lost between postnatal days 7 and 14. These findings provide important insights into the risk of in utero ICH with varying degrees of thrombocytopenia and into defining the developmental high-risk period for thrombocytopenia-driven ICH in a mouse model of FNAIT.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species.

          Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7-10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxic-ischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors?

            Although cerebellar hemorrhagic injury is increasingly diagnosed in infants who survive premature birth, its long-term neurodevelopmental impact is poorly defined. We sought to delineate the potential role of cerebellar hemorrhagic injury in the long-term disabilities of survivors of prematurity. We compared neurodevelopmental outcome in 3 groups of premature infants (N = 86; 35 isolated cerebellar hemorrhagic injury, 35 age-matched controls, 16 cerebellar hemorrhagic injury plus supratentorial parenchymal injury). Subjects underwent formal neurologic examinations and a battery of standardized developmental, functional, and behavioral evaluations (mean age: 32.1 +/- 11.1 months). Autism-screening questionnaires were completed. Neurologic abnormalities were present in 66% of the isolated cerebellar hemorrhagic injury cases compared with 5% of the infants in the control group. Infants with isolated cerebellar hemorrhagic injury versus controls had significantly lower mean scores on all tested measures, including severe motor disabilities (48% vs 0%), expressive language (42% vs 0%), delayed receptive language (37% vs 0%), and cognitive deficits (40% vs 0%). Isolated cerebellar hemorrhagic injury was significantly associated with severe functional limitations in day-to-day activities. Significant differences were noted between cases of cerebellar hemorrhagic injury versus controls on autism screeners (37% vs 0%) and internalizing behavioral problems (34% vs 9%). Global developmental, functional, and social-behavioral deficits were more common and profound in preterm infants with injury to the vermis. Preterm infants with cerebellar hemorrhagic injury and supratentorial parenchymal injury were not at overall greater risk for neurodevelopmental disabilities, although neuromotor impairment was more severe. Cerebellar hemorrhagic injury in preterm infants is associated with a high prevalence of long-term pervasive neurodevelopment disabilities and may play an important and underrecognized role in the cognitive, learning, and behavioral dysfunction known to affect survivors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study.

              Magnetic resonance imaging (MRI) findings have been reported for specific clinical cerebral palsy (CP) subgroups or lesion types but not in a large population of children with all CP subtypes. Further information about the causes of CP could help identify preventive strategies. To investigate the correlates of CP in a population sample and compare clinical findings with information available from MRI brain studies. Cross-sectional, population-based investigative study conducted in 8 European study centers (North West London and North East London, England; Edinburgh, Scotland; Lisbon, Portugal; Dublin, Ireland; Stockholm, Sweden; Tübingen, Germany; and Helsinki, Finland). Five hundred eighty-five children with CP were identified who had been born between 1996 and 1999; 431 children were clinically assessed and 351 had a brain MRI scan. Standardized clinical examination results, parental questionnaire responses, MRI results, and obstetric, genetic, and metabolic data from medical records. Important findings include the high rate of infections reported by mothers during pregnancy (n = 158 [39.5%]). In addition, 235 children (54%) were born at term while 47 children (10.9%) were very preterm (<28 weeks). A high rate of twins was found, with 51 children (12%) known to be from a multiple pregnancy. Clinically, 26.2% of children had hemiplegia, 34.4% had diplegia, 18.6% had quadriplegia, 14.4% had dyskinesia, 3.9% had ataxia, and 2.6% had other types of CP. Brain MRI scans showed that white-matter damage of immaturity, including periventricular leukomalacia (PVL), was the most common finding (42.5%), followed by basal ganglia lesions (12.8%), cortical/subcortical lesions (9.4%), malformations (9.1%), focal infarcts (7.4%), and miscellaneous lesions (7.1%). Only 11.7% of these children had normal MRI findings. There were good correlations between the MRI and clinical findings. These MRI findings suggest that obstetric mishaps might have occurred in a small proportion of children with CP. A systematic approach to identifying and treating maternal infections needs to be developed. Multiple pregnancies should be monitored closely, and the causes of infant stroke need to be investigated further so preventive strategies can be formulated. All children with CP should have an MRI scan to provide information on the timing and extent of the lesion.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                April 14 2022
                April 14 2022
                : 139
                : 15
                : 2355-2360
                Affiliations
                [1 ]The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
                [2 ]Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
                Article
                10.1182/blood.2021014094
                be12cae6-a2ca-4ba5-b5ff-dbf9431fc210
                © 2022
                History

                Comments

                Comment on this article