92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Six3 demarcates the anterior-most developing brain region in bilaterian animals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the 'new phylogeny' placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla.

          Results

          We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila, a six3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids. In insects, onychophorans and Platynereis, the otx+ region instead harbours the eye anlagen, which thus occupy a more posterior position.

          Conclusions

          These observations indicate that the annelid, onychophoran and arthropod head develops from a conserved anterior-posterior sequence of six3+ and otx+ regions. The six3+ anterior pole of the arthropod head and brain accordingly lies in an anterior-median embryonic region and, in consequence, the optic lobes do not represent the tip of the neuraxis. These results support the hypothesis that the last common ancestor of annelids and arthropods already possessed neurosecretory centres in the most anterior region of the brain. In light of its broad evolutionary conservation in protostomes and, as previously shown, in deuterostomes, the six3- otx head patterning system may be universal to bilaterian animals.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Anteroposterior patterning in hemichordates and the origins of the chordate nervous system.

          The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution.

            Neurosecretory control centers form part of the forebrain in many animal phyla, including vertebrates, insects, and annelids. The evolutionary origin of these centers is largely unknown. To identify conserved, and thus phylogenetically ancient, components of neurosecretory brain centers, we characterize and compare neurons that express the prohormone vasotocin (vasopressin/oxytocin)-neurophysin in the developing forebrain of the annelid Platynereis dumerilii and of the zebrafish. These neurons express the same tissue-restricted microRNA, miR-7, and conserved, cell-type-specific combinations of transcription factors (nk2.1, rx, and otp) that specify their identity, as evidenced by the specific requirement of zebrafish rx3 for vasotocin-neurophysin expression. MiR-7 also labels another shared population of neurons containing RFamides. Since the vasotocinergic and RFamidergic neurons appear to be directly sensory in annelid and fish, we propose that cell types with dual sensory-neurosecretory properties were the starting point for the evolution of neurosecretory brain centers in Bilateria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium.

              The evolution of the highest-order human brain center, the "pallium" or "cortex," remains enigmatic. To elucidate its origins, we set out to identify related brain parts in phylogenetically distant animals, to then unravel common aspects in cellular composition and molecular architecture. Here, we compare vertebrate pallium development to that of the mushroom bodies, sensory-associative brain centers, in an annelid. Using a newly developed protocol for cellular profiling by image registration (PrImR), we obtain a high-resolution gene expression map for the developing annelid brain. Comparison to the vertebrate pallium reveals that the annelid mushroom bodies develop from similar molecular coordinates within a conserved overall molecular brain topology and that their development involves conserved patterning mechanisms and produces conserved neuron types that existed already in the protostome-deuterostome ancestors. These data indicate deep homology of pallium and mushroom bodies and date back the origin of higher brain centers to prebilaterian times. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                EvoDevo
                EvoDevo
                BioMed Central
                2041-9139
                2010
                29 December 2010
                : 1
                : 14
                Affiliations
                [1 ]Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
                [2 ]Johannes Gutenberg-Universität Mainz, Institut für Genetik, J.-J.-Becher-Weg 32, 55128 Mainz, Germany
                [3 ]Johann-Friedrich-Blumenbach-Institute of Zoology, Anthropology and Developmental Biology, DFG Research Centre for Molecular Physiology of the Brain (CMPB), Georg August University, von-Liebig-Weg-11, 37077 Göttingen, Germany
                [4 ]University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
                [5 ]Department of Embryology, State University of St. Petersburg, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
                [6 ]University of Vienna, Department for Molecular Evolution and Development, Althanstrasse 14, A-1090 Vienna, Austria
                [7 ]Vetmeduni Vienna, Institute of Population Genetics, Veterinärplatz 1, A-1210 Vienna, Austria
                [8 ]Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
                Article
                2041-9139-1-14
                10.1186/2041-9139-1-14
                3025827
                21190549
                bdf6cf76-540e-417d-b482-bc01db8d2655
                Copyright ©2010 Steinmetz et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 March 2010
                : 29 December 2010
                Categories
                Research

                Developmental biology
                Developmental biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content209

                Cited by68

                Most referenced authors532