12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhanced sealing strength of a hydrophobically-modified Alaska pollock gelatin-based sealant.

      1 , , ,
      Biomaterials science
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was the development of an innovative biocompatible sealant composed of Alaska pollock-derived gelatin partially modified with a dodecyl group (C12-ApGltn) and a poly(ethylene glycol)-based crosslinker, pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate. The burst strength of the developed sealants was measured using porcine aorta and rat lungs. The maximum burst strength of a C12-ApGltn-based sealant against the porcine aorta was 4-fold higher than that of an original ApGltn (Org-ApGltn)-based sealant. No significant increase in the burst strength was observed between C12-ApGltn-based sealants with 4.2 and 8.9 mol% modification ratios. From histological observation after burst strength measurement, tissue tearing was observed when a C12-ApGltn-based sealant was applied. In contrast, the Org-ApGltn-based sealant was peeled away from the aorta surface due to cohesion failure. Similar to the porcine aorta, the burst strength of C12-ApGltn-based sealants applied on a rat lung defect was 3-fold higher than that of an Org-ApGltn-based sealant. The curing time of the C12-ApGltn-based sealant measured by a simple mixing method was shorter (2.6 ± 0.1 s) than that of the Org-ApGltn-based sealant (4.1 ± 0.3 s). The swelling ratio of the C12-ApGltn-based sealant (23.7 ± 3.1) was significantly lower than that of the Org-ApGltn-based sealant (32.3 ± 1.1). The C12-ApGltn-based sealant was completely degraded within 28 days after implantation in the backs of rats without a severe inflammation reaction. However, the Org-ApGltn-based sealant disappeared within 14 days. These results indicated that hydrophobically-modified ApGltn has an effective sealing effect on moist tissues and biocompatibility in vivo.

          Related collections

          Author and article information

          Journal
          Biomater Sci
          Biomaterials science
          Royal Society of Chemistry (RSC)
          2047-4849
          2047-4830
          May 02 2017
          : 5
          : 5
          Affiliations
          [1 ] Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
          Article
          10.1039/c6bm00829a
          28294225
          bdd6bf3e-23a8-477e-839b-e3ead2f6aa3c
          History

          Comments

          Comment on this article