0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design, synthesis and biological activities of echinopsine derivatives containing acylhydrazone moiety

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Based on the broad-spectrum biological activities of echinopsine and acylhydrazones, a series of echinopsine derivatives containing acylhydrazone moieties have been designed, synthesized and their biological activities were evaluated for the first time. The bioassay results indicated that most of the compounds showed moderate to good antiviral activities against tobacco mosaic virus (TMV), among which echinopsine ( I) (inactivation activity, 49.5 ± 4.4%; curative activity, 46.1 ± 1.5%; protection activity, 42.6 ± 2.3%) and its derivatives 1 (inactivation activity, 44.9 ± 4.6%; curative activity, 39.8 ± 2.6%; protection activity, 47.3 ± 4.3%), 3 (inactivation activity, 47.9 ± 0.9%; curative activity, 43.7 ± 3.1%; protection activity, 44.6 ± 3.3%), 7 (inactivation activity, 46.2 ± 1.6%; curative activity, 45.0 ± 3.7%; protection activity, 41.7 ± 0.9%) showed higher anti-TMV activity in vivo at 500 mg/L than commercial ribavirin (inactivation activity, 38.9 ± 1.4%; curative activity, 39.2 ± 1.8%; protection activity, 36.4 ± 3.4%). Some compounds exhibited insecticidal activities against Plutella xylostella, Mythimna separate and Spodoptera frugiperda. Especially, compounds 7 and 27 displayed excellent insecticidal activities against Plutella xylostell (mortality 67 ± 6% and 53 ± 6%) even at 0.1 mg/L. Additionally, most echinopsine derivatives exhibited high fungicidal activities against Physalospora piricola and Sclerotinia sclerotiorum.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Top 10 plant viruses in molecular plant pathology.

          Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

            Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biologically active quinoline and quinazoline alkaloids part I

              Quinoline and quinazoline alkaloids, two important classes of N- based heterocyclic compounds, have attracted tremendous attention from researchers worldwide since the 19th century. Over the past 200 years, many compounds from these two classes were isolated from natural sources, and most of them and their modified analogs possess significant bioactivities. Quinine and camptothecin are two of the most famous and important quinoline alkaloids, and their discoveries opened new areas in antimalarial and anticancer drug development, respectively. In this review, we survey the literature on bioactive alkaloids from these two classes and highlight research achievements prior to the year 2008 (Part I). Over 200 molecules with a broad range of bioactivities, including antitumor, antimalarial, antibacterial and antifungal, antiparasitic and insecticidal, antiviral, antiplatelet, anti-inflammatory, herbicidal, antioxidant and other activities, were reviewed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
                Bookmark

                Author and article information

                Contributors
                yy529222@163.com
                wangqm@nankai.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 February 2022
                21 February 2022
                2022
                : 12
                : 2935
                Affiliations
                [1 ]GRID grid.440656.5, ISNI 0000 0000 9491 9632, College of Arts, , Taiyuan University of Technology, ; Taiyuan, 030024 People’s Republic of China
                [2 ]GRID grid.440656.5, ISNI 0000 0000 9491 9632, College of Biomedical Engineering, , Taiyuan University of Technology, ; Taiyuan, 030024 People’s Republic of China
                [3 ]GRID grid.216938.7, ISNI 0000 0000 9878 7032, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), , Nankai University, ; Tianjin, 300071 People’s Republic of China
                Author information
                http://orcid.org/0000-0002-6062-3766
                Article
                6775
                10.1038/s41598-022-06775-7
                8861054
                35190609
                bdd6b0e8-8a38-4f02-8bf5-0bc887324f97
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 October 2021
                : 4 February 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 22001190
                Award ID: 21702144
                Award Recipient :
                Funded by: Shanxi Applied Basic Research Program
                Award ID: 201801D221123
                Award Recipient :
                Funded by: Shanxi Province Scientific and Technological Innovation Project of Colleges
                Award ID: 2019L0123
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                medicinal chemistry,organic chemistry,chemical synthesis
                Uncategorized
                medicinal chemistry, organic chemistry, chemical synthesis

                Comments

                Comment on this article