4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis

      1 , 2 , 1 , 3 , 1 , 1 , 1
      Artificial Cells, Nanomedicine, and Biotechnology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mosquitoes pose a threat to humans and animals, causing millions of deaths every year. Vector control by effective eco-friendly pesticides of natural origin is a serious issue that requires urgent attention. The employment of green-reducing extracts for nanoparticles biosynthesis in a rapid and single-step process represents a promising strategy. In this study, silver nanoparticles (AgNPs) were biofabricated using an essential oil of Aquilaria sinensis (AsEO) and Pogostemonis Herba essential oil of Pogostemon cablin (PcEO) in one step and cost-effective manner. UV-vis spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to confirm the AgNPs formation and their biophysical characterization. The larvicidal and pupicidal toxicity of AsEO, PcEO and biosynthesized AgNPs were evaluated against larvae and pupae of the dengue and Zika virus vector Aedes albopictus. Compared to the tested essential oils, the biofabricated AgNPs showed the highest toxicity against larvae and pupae of Ae.albopictus. In particular, the LC50 values of AsEO ranged from 44.23 (I) to 166 (pupae), LC50 values of PcEO ranged from 32.49 (I) to 90.05(IV), LC50 values of AsEO-AgNPs from 0.81 (I) to 1.12 (IV) and LC50 values of PcEO-AgPNs from 0.85 (I) to 1.19 (IV). Furthermore, histological analysis of the midgut cells of the control and treated larvae exhibited that the epithelial cells and brush border were highly affected by the fabricated AgNPs compared to the essential oils (AsEO and PcEO). Overall, the A. sinensis and P. cablin essential oils fabricated AgNPs have a potential of application as a biopesticide for mosquito control through safer and cost-effective approach.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

          The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the manipulation of swarming behaviour (i.e. "lure and kill" approach) are discussed. The importance of further research on the chemical cues routing mosquito swarming and mating dynamics is highlighted. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in the presence of ultra-low quantities of nanoformulated botanicals, which boost their predation rates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Abundance and seasonal activity of Haemaphysalis concinna (Acari: Ixodidae) at the border between China and Russia in Northern Inner Mongolia, China

            Background Haemaphysalis concinna, a three-host tick vector of several pathogens, poses a high risk to the health of humans and livestock. However, knowledge of the seasonal activities, relative density and other ecological characteristics of this tick is quite limited and fragmentary. This knowledge gap represents a bottleneck in our understanding of the health risks associated with tick-borne pathogens. Methods We conducted a two-year study from April 2012 to March 2014 in Northern Inner Mongolia situated on the China-Russia border, China, to investigate the seasonal activities and relative density of the three developmental stages of H. concinna. During the study period, feeding ticks were removed weekly from domestic sheep and their attachment sites were recorded. Questing ticks were collected weekly from five habitats (broadleaf forest, coniferous forest, shrubs, grassland and mixed coniferous forest) using the flagging-dragging method of capture. Rodents were captured and examined on two consecutive nights each week from June to September in 2012. Results H. concinna ticks were found mainly in shrubs and grasslands habitats. Adults were encountered from February to October with the major peak occurring in June. Larvae, which were observed mainly from late April to late September, reached peak numbers in late July. Nymphs were observed mainly from March to October, and their numbers peaked in early July. H. concinna adults and nymphs were found attached to sheep and their most favored sites of attachment were the face and ears. H. concinna larvae were found on two rodent species, Apodemus peninsulae and Eutamias sibiricus. Conclusion The relative density and seasonal activities of H. concinna have been systematically reported for Northern Inner Mongolia, China. The information about the hosts infested by H. concinna and its preferred attachment sites on sheep will help efforts to control this tick and the tick-borne diseases carried by it.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say

                Bookmark

                Author and article information

                Journal
                Artificial Cells, Nanomedicine, and Biotechnology
                Artificial Cells, Nanomedicine, and Biotechnology
                Informa UK Limited
                2169-1401
                2169-141X
                August 29 2017
                August 18 2018
                August 31 2017
                August 18 2018
                : 46
                : 6
                : 1171-1179
                Affiliations
                [1 ] Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China;
                [2 ] Department of Entomology, Faculty of Veterinary and Animal Husbandry, Somali National University, Mogadishu, Somalia;
                [3 ] Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo, Egypt
                Article
                10.1080/21691401.2017.1365723
                28859534
                bdd562f5-984c-4ad7-a5ee-5e902306277a
                © 2018
                History

                Comments

                Comment on this article