The majority of common bean plants are cultivated under drought conditions. Maintaining crop yields under drought stress is thus one of the biggest challenges facing bean production. In order to improve our understanding of the complex mechanisms involved in the response of common bean (Phaseolus vulgaris) to drought stress, a proteomic approach was used to identify drought-responsive proteins in leaves of two cultivars differing in their response to drought, Tiber and more sensitive Starozagorski čern. 2D-DIGE was used to compare differences in protein abundance between control and stressed plants. Fifty-eight proteins whose abundance changed significantly were identified by LC-MS/MS in Tiber and 64 in Starozagorski čern. The majority of identified proteins were classified into functional categories that include energy metabolism, photosynthesis, ATP interconversion, protein synthesis and proteolysis, stress and defence related proteins. Details of the function of the identified proteins and their abundance profiles in Tiber and Starozagorski are discussed. Interactions between identified proteins were demonstrated by bioinformatics analysis, enabling a more complete insight into biological pathways and molecular functions affected by drought stress. The results form the basis for a further understanding of the biochemical mechanisms of drought response in common bean.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.