9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Killers 2.0: NK cell therapies at the forefront of cancer control

      , , , ,
      Journal of Clinical Investigation
      American Society for Clinical Investigation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural killer (NK) cells are innate cytotoxic lymphocytes involved in the surveillance and elimination of cancer. As we have learned more and more about the mechanisms NK cells employ to recognize and eliminate tumor cells, and how, in turn, cancer evades NK cell responses, we have gained a clear appreciation that NK cells can be harnessed in cancer immunotherapy. Here, we review the evidence for NK cells’ critical role in combating transformed and malignant cells, and how cancer immunotherapies potentiate NK cell responses for therapeutic purposes. We highlight cutting-edge immunotherapeutic strategies in preclinical and clinical development such as adoptive NK cell transfer, chimeric antigen receptor–expressing NK cells (CAR-NKs), bispecific and trispecific killer cell engagers (BiKEs and TriKEs), checkpoint blockade, and oncolytic virotherapy. Further, we describe the challenges that NK cells face (e.g., postsurgical dysfunction) that must be overcome by these therapeutic modalities to achieve cancer clearance.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells

          Summary Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural killer cells and other innate lymphoid cells in cancer

            Immuno-oncology is an emerging field that has revolutionized cancer treatment. Most immunomodulatory strategies focus on enhancing T cell responses, but there has been a recent surge of interest in harnessing the relatively underexplored natural killer (NK) cell compartment for therapeutic interventions. NK cells show cytotoxic activity against diverse tumour cell types, and some of the clinical approaches originally developed to increase T cell cytotoxicity may also activate NK cells. Moreover, increasing numbers of studies have identified novel methods for increasing NK cell antitumour immunity and expanding NK cell populations ex vivo, thereby paving the way for a new generation of anticancer immunotherapies. The role of other innate lymphoid cells (group 1 innate lymphoid cell (ILC1), ILC2 and ILC3 subsets) in tumours is also being actively explored. This Review provides an overview of the field and summarizes current immunotherapeutic approaches for solid tumours and haematological malignancies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.

              Metazoan organisms may discriminate between self and non-self not only by the presence of foreign antigens but also by the absence of normal self markers. Mammalian adaptive immune responses use the first strategy, with the additional requirement that foreign antigens are recognized in the context of self-major histocompatibility complex (MHC) products at the cell surface. Aberrant cells which fail to express MHC products adequately can therefore avoid detection. A more primitive but complementary defence system, eliminating such cells on the basis of absent self-markers, is suggested by a re-interpretation of phenomena associated with metastasis and natural resistance. We now show that murine lymphoma cells selected for loss of H-2 expression are less malignant after low-dose inoculation in syngeneic hosts than are wild-type cells, and that the rejection of such cells is non-adaptive. On the basis of our data, we suggest that natural killer cells are effector cells in a defence system geared to detect the deleted or reduced expression of self-MHC.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                September 3 2019
                September 3 2019
                September 3 2019
                September 3 2019
                September 3 2019
                September 3 2019
                : 129
                : 9
                : 3499-3510
                Article
                10.1172/JCI129338
                6715409
                31478911
                bd7acdbb-1b0c-4b6e-a257-3ccfa958afa3
                © 2019
                History

                Comments

                Comment on this article